Magic: A VLSI Layout System

John K. Ousterhout, Gordon T. Hamachi, Robert N. Mayo,
Walter S. Scott, and George S. Taylor

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

Magic is a “smart” layout system for integrated circuits. It incorporates ex-
pertise about design rules and connectivity directly into the layout system in
order to implement powerful new operations, including: a continuous design-
rule checker that operates in background to maintain an up-to-date picture of
violations; an operation called plowing that permits interactive stretching and
compaction; and routing tools that can work under and around existing con-
nections in the channels. Magic uses a new data structure called corner stiich-
ing to achieve an efficient implementation of these operations.

Keywords and Phrases: interactive layout editor, corner stitching, design-
rule checking, routing, stretching, compaction.

Magic: A VLSI Layout System

John K. Ousterhout, Gordon T. Hamachi, Robert N. Mayo,
Walter S. Scott, and George S. Taylor

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

Magic is a “smart” layout system for integrated circuits. It incorporates ex-
pertise about design rules and connectivity directly into the layout system in
order to implement powerful new operations, including: a continuous design-
rule checker that operates in background to maintain an up-to-date picture of
violations; an operation called plowing that permits interactive stretching and
compaction; and routing tools that can work under and around existing con-
nections in the channels. Magic uses a new data structure called corner stiich-
ing to achieve an efficient implementation of these operations.

Keywords and Phrases: interactive layout editor, corner stitching, design-
rule checking, routing, stretching, compaction.

Magic: A VLSI Layout System December 2, 1983

1. Introduction

Magic is a new interactive layout editing system for large-scale MOS cus-
tom integrated circuits. The system contains knowledge about geometrical
design rules, transistors, connectivity, and routing. Magic uses its knowledge
to provide powerful interactive operations that simplify. the task of creating
layouts. Moreover, once a layout has been entered, Magic makes it easy to
modify it; this permits designers to fix bugs easily, experiment with alterna-

tive designs, and make performance enhancements.

Magic provides several new operations for its users. Design rules are
checked continuously and incrementally during editing sessions to keep up-to-
date information about violations. When the layout is finished, then so is the
design-rule check. A new operation called plowing allows layouts to be com-
pacted and stretched while observing all the design rules and maintaining cir-
cuit structure. Routing tools are provided that can work under and around
existing wires in the channels (such as power and ground routing) while still

providing the traditional efficiency of a channel router.

Two aspects of Magic's implementation make the new operations possible.
First, the system is based on a data structure called corner stitching which is
both simple and efficient for a variety of geometrical operations [8]. Without
corner stitching, most of Magic's new operations would be too slow for interac-

tive use. Second, designs in Magic are specified using abstract layers, rather

Magic: A VLSI Layout System December 2, 1983

than actual mask layers. The abstract layers represent circuit structures such
as contacts and transistors in a form that appears somewhat like sticks [14]
except that objects are seen in their actual sizes and positions. The abstract
layers incur no density penalty, but they simplify the designer’s view of the

system and provide more explicit information about the circuit structure.

This paper gives an overview of the Magic system. Section 2 describes
the specific problems Magic attempts to solve, and the overall approach of the
system. Sections 3 and 4 describe the data structure and abstract layers used
in the Magic implementation. Sections 5-11 discuss Magic’'s new operations,
and Section 12 presents the implementation status of the system. Three addi-
tional papers in this technical report discuss design-rule checking, plowing, and

routing in detail [2,11,12}.

2. Background and Goals

Our previous layout editing systems, Caesar [5,7] and KIC2 (3], have been
used since 1980 for a variety of large and small designs in several MOS techno-
logies. They are similar to systems currently in use in industry. Although our
systems have proven quite useful, we uncovered a few areas where they (and
most other existing layout systems) are inadequate. The most severe inade-
quacy is in the area of routing, where most systems provide little support. We

estimate that between 25% and 509% of all layout time for our circuits is used

Magic: A VLSI Layout System December 2, 1983

for hand-routing the global interconnections, even though the circuits are

highly regular to begin with. The task of routing is tedious and error-prone.

A more general problem is one of flexibility. Once a design has been
entered into the layout system, it is hard to change. This makes it difficult to
fix bugs found late in the layout process, and almost impossible to experiment
with alternative designs. If designers cannot experiment with and evaluate
alternatives, it is hard for them to develop intuition about what is good and
bad. Routing is the most extreme example of the flexibility problem. It takes
so long to route a circuit that it is out of the question to re-route a chip to try
a new floor-plan. Even small cells are difficult to change: modest changes to
the topology of a cell often require the entire cell to be re-entered. In many
industrial settings, layouts are so difficult to enter and modify that designs are

completely frozen before layout begins.

Our overall goal for Magic is to increase the power and flexibility of the
lavout editor so that designs can be entered quickly and modified easily.
When the system is complete, we hope it will provide order-of-magnitude

speedups for three different parts of the design process:

1) Once a large circuit has been routed, it should be possible to remove the
routing and re-route in a few hours. Even the initial routing should not
require more than a few days for a large custom circuit. With our

current systems, routing requires a few weeks to a few months.

Magic: A VLSI Layout System December 2, 1983

2) The turnaround time for small bug fixes should be less than 15 minutes.
For example, if a bug is found while simulating the circuit extracted from
a layout, it should be possible to fix the layout, verify that the new layout
meets the design rules, and re-extract the circuit, all in 15 minutes. This
process currently requires several hours of CPU time and at least a half-

day of elapsed time.

3) It should not take more than 30 seconds to 1 minute to re-arrange a cell
to try out a different topology. With our current systems this requires

anywhere from tens of minutes to several hours.

Magic meets these goals by combining circuit expertise with an interactive
editor. It understands layout rules; it knows what transistors and contacts are
(and that they must be treated differently than wires); and it knows how to
route wires efficiently. Magic uses the circuit knowledge to provide interactive
operations that re-arrange a circuit as a circuit, rather than as a collection of
geometrical objects. It also performs analysis operations, like design-rule
checking, tncrementally, as the circuit is created and modified. This means
that only a small amount of work must be done each time the circuit is

modified.

Magic: A VLSI Layout System December 2, 1983

3. Corner Stitching

In Magic, as in most other layout editors, a layout consists of cells. Each
cell contains two sorts of things: geometrical shapes and subcells. Magic
represents the contents of cells using a technique called corner stitching.
Corner stitching is a geometrical data structure for representing Manhattan
shapes. It provides the underlying mechanisms that make possible most of
Magic's advanced features. Corner stitching is simple, provides a variety of
efficient searching operations, and allows the database to be modified quickly.
What follows is a brief introduction to corner stitching. See [6] for a more

complete description.

The basic elements in corner stitching are planes and tiles. Each cell

contains a number of corner-stitched planes to represent the cell’s geometries

2777

//)
g

&\\\i

Vo0

Figure 1. Every point in a corner-stitched plane is contained in exactly one tile. In
this case there are three solid tiles, and the rest of the plane is covered by space tiles
(dotted lines). The space tiles on the sides extend to infinity. In general, a plane
may contain many different types of tiles.

Magic: A VLSI Layout System December 2, 1983

—
L

(3)

(b)

Figure 2. Areas of the same type of material are represented with horizontal strips
that are as wide as possible, then as tall as possible. In each of the figures the tile
structure on the left is illegal and is converted into the tile structure on the right. In
(a) it is illegal for two tiles of the same type to share a vertical edge. In (b) the two
tiles must be merged together since they have exactly the same horizontal span.

and subcells; each plane consists of a number of rectangular tiles of different
types. There are three important properties of a corner-stitched plane, illus-

trated in Figures 1, 2, and 3:

Coverage: Each point in the x-y plane is contained in exactly one tile (Figure
1). Empty space is represented as well as the area covered with

material.

Strips: Material of the same type is represented with horizontal strips (Fig-
ure 2). The strip structure provides a canonical form for the data-
base and prevents it from fracturing into a large number of small

tiles.

Stitches: Tiles are linked together at their corners. Each tile contains four

of these links, called stitches {Figure 3).

Magic: A VLSI Layout System December 2, 1983

f L,
‘.; 'y ¢ 'yl
; Lo - L
Gt 1] |
; P :
9% =4, _
- J"l | N
' v L] L
- Y 'y Py
v ba s
-1 ; 4
i* v t,
< :
¥

Figure 3. Each tile is linked to its neighbors with four poiaters, called corner
stitches. The corner stitches provide a form of two-dimensional sorting. They per-
mit a variety of geometrical operations to be performed efficiently, such as searching
an area or finding all the neighboring tiles on one side of a given tile.

The stitches permit a variety of search operations to be performed efliciently,
including: finding the tile containing a given point; finding all the tiles in an
area; finding all the tiles that are neighbors of a given tile; and traversing a
connected region of tiles. The coverage property makes it easy to update the
database in response to edits, and the strip property keeps the database
representation small. To the best of our knowledge, corner stitching is unique
in its abilitv to provide these efficient two-dimensional searches and yet permit
fast updates of the kind needed in an interactive tool. The only disadvantage
of corner stitching in comparison to less powerful data structures is that it
requires more storage space {about three times as much space as structures
based on linked lists of rectangles). Even so, the storage requirements do not
appear to be a problem for chips likely to be designed in the next several

vears.

v

-3

Magic: A VLSI Layout System December 2, 1983

4. Abstract Layers

There are several ways in which corner-stitched planes might be used to
represent the mask geometries in a cell. One alternative is to use a separate
plane for each mask layer; each plane contains space tiles and tiles of one par-
ticular mask type. The disadvantage of this approach-is that many opera-
tions, such as design-rule checking and circuit extraction, require information
about layer interactions (such as polysilicon crossing diffusion to form a
transistor, or implants changing the type of a transistor). With a separate
plane per mask layer, these operations will spend a substantial amount of time

cross-registering the information on different planes.

Another alternative is to place all the mask layers into a single corner-
stitched plane. Since there can be only one tile at a given point in a given
plane, different tile types must be used for each possible overlap of mask
layers. This eliminates the registration problem, but results in a large number
of small tiles where several mask layers overlap. Even though many of the
laver overlaps are pot significant (such as metal and implant), separate tile
types have to be used to represent them. As a result, the database fragments

into a large number of tiles, and the overheads for all operations increase.

The solution we chose for Magic lies between these two extremes. We
decided to use 2 small number of planes, where each plane contains a set of

lavers that have design-rule interactions. If layers do not have direct design-

Magic: A VLSI Layout System

Plane

Tile Types

Poly-Diff

Polysilicon

Diffusion

Enhancement Transistor
Depletion Transistor
Buried Contact
Poly-Metal Contact
Diffusion-Metal Contact-
Space

Metal

Metal

Poly-Metal Contact
Diffusion-Metal Contact
Overglass Via to Metal
Space

December 2, 1983

Table 1. The corner-stitched planes and tile types used to represent the mask infor-
mation for an tMOS process with buried contacts and single-level metal. Since po-
lysilicon and diffusion have design-rule interactions, they are placed in the same
plane. Metal interacts with polysilicon and diffusion only at contacts, so it is placed
in a separate plane. Contacts between metal and diffusion or polysilicon are dupli-

cated in both planes.

rule interactions (such as poly and metal), they may be placed in different

planes. Some layers, such as contacts, may appear in two or more planes. In

our single-metal nMOS process there are two planes: one for polysilicon,

diffusion, transistors, and buried contacts; and one for metal (see Table I).

We also decided not to represent every mask layer explicitly. Instead of

dealing with actual mask layers, Magic is based around abséract layers. The

abstract layers do not include implants, wells, buried contact windows, or con-

tact vias. Instead, the abstract lavers include separate tile types for each pos-

sible kind of transistor and contact. Magic generates the missing mask layers

when it creates CIF files for fabrication. Table I gives the planes and abstract

Magic: A VLSI Layout System December 2, 1983

(c) (d)

Figure 4. In Magic, transistors and contacts are drawn in an abstract form: (a) a
three-transistor shift-register cell, showing actual mask layers; (b) the same cell as it
is seen in Magic; (c) the information in Magic's poly-diff plane; (d) the information
in Magic's metal plane. Contacts are duplicated in each plane.

Bolysilicon

i Metal

Ciffusion
Enhancement~FET
% Oenlet on-FET

g;::- Bur 1ec-Contact

& Diff-Metal-Contect

layers used in Magic, and Figure 4 illustrates how the abstract layers are used

in a sample cell. Abstract layers change the way a circuit looks on the screen,

but they do not incur any density penalty.

-10 -

Magic: A VLSI Layout System December 2, 1883

The Magic design style is similar to sticks and symbolic systems such as
Mulga [13] and VIVID [10], except that the geometries are fully fleshed.
Designers draw the primary interconnection layers and simplified forms of con-
tacts and transistors. Magic fills in the structural details. As in sticks, there
are simple operations for stretching and compacting cells. The advantage of
Magic's abstract-layer approach is that designers can see the exact size and
shape of a cell while it is being edited, and they only work with a single
representation of the circuit. When using sticks, designers go back and forth
between the sticks and mask representation; the final size of the cell is hard to
determine until it has been compacted and fleshed out. The following sections
will show how the abstract layers simplify design-rule checking, plowing, and

circuit extraction.

In addition to the planes used to hold mask geometry, each cell contains
another plane to hold information about its subcells. Subcells are allowed to
overlap in Magic; each distinct subcell area or overlap between subcells is
represented with a different tile in the subcell plane. Each tile contains
pointers to all of the subcells that cover the tile’s area. By using corner-
stitching in this way, it is easy to find subcell interactions and to determine

which (if any) subcells cover a particular area.

- 11 -

Magic: A VLSI Layout System December 2, 1983

5. Basic Commands

The basic set of commands in Magic is similar to the commands in Caesar
[5,7]. Mask geometry is edited in a style like painting: a rectangle is placed
over an area of the layout, and mask layers may be painted or erased over the
area of the rectangle. Additional operations are provided to make a copy of
all the “‘paint” in a rectangular area and copy it back at a different place in

the layout. The corner-stitched representation is invisible to users.

Magic also provides commands for manipulating subcells. Subcells may
be placed in a parent, moved, mirrored in x or y, rotated (by multiples of 90
degrees only), arrayed, and deleted. Subcells are handled by reference, not by
copying: if a subeell is modified, the modifications will be reflected everywhere

that the subcell is used.

8. Incremental Design-Rule Checking

Design-rule checking is an integral part of the Magic system. Our main
goal was to make the checker very fast, particularly for small changes: the
cost of reverifying a layout should be proportional to the amount of the layout
that has been changed, not to the total size of the layout. To achieve this,
Magic's design-rule checker runs continuously in the background during edit-
ing sessions. When the layout is changed, Magic records the areas that must

be reverified. The design-rule checker then rechecks these areas during the

Magic: A VLSI Layout System December 2, 1983

time when the user is thinking. For small changes, error information appears
on the screen instantly (and also disappears instantly when the problem has
been fixed). For large changes (such as moving one large subcell on top of
another), it may take seconds or minutes for the design-rule checker to com-
plete its job. In the meantime, the designer can continue editing. If
reverification hasn’t been completed when an editing session ends, the areas
still to be reverified are stored with the cell so that reverification can be com-
pleted the next time the cell is edited. Error information is also stored with
cells until the errors are fixed. With this mechanism, there is never a need to

check a layout ‘‘from scratch.”

Magic’s basic rule-checker works from the edges in a design. Based on
the type of material on either side of an edge, it verifies constraints that
require certain layers to be present or absent in areas around the edge. There
are several reasons why corner stitching and the abstract layers allow edge
rules to be checked quickly. Each corner-stitched plane can be checked
independently. All the ‘“‘interesting” edges are already present in the tile
structure, so there is no need to register different mask layers. The abstract
layers make it unnecessary to check formation rules associated with implants
and vias. Lastly, corner stitching provides efficient algorithms for locating all

the edges in an area and for searching the constraint areas.

-13-

Magic: A VLSI Layout System December 2, 1983

In addition to a fast basic checker, the incremental rule checker contains
algorithms for handling hierarchy. When a cell in the middle of a hierarchical
layout is changed, Magic checks interactions between this cell and its subcells,
and also interactions between this cell and other cells in its parents and
grandparents. More details on the basic DRC mechar_xism and on Magic’s

hierarchical approach can be found in [12].

7. Plowing

Plowing is a simple operation that can be used to rearrange a layout
without changing the electrical circuit that it represents. To invoke the plow
operation, the user specifies a vertical or horizontal line segment (the plow)
and a distance perpendicular to it (the plow distance). See Figure 5. Magic

diffusion

L

yd

transistor /A/
Y

%%

plow — //j

ok

(before) (after)

Figure 5. In plowing, a horizontal or vertical line is moved across the circuit, push-
ing material out of its way. Design rules and connectivity are maintained.

Magic: A VLSI Layout System December 2, 1983

sweeps the plow for the specified distance, and moves and moves all material
out of the area swept out by the plow. The edges of this material are likewise
treated as plows, pushing other material in front of them. Mask geometry in
front of the plow is compacted as it is moved, and mask geometry'that crosses
the initial position of the plow is stretched behind the plow. Jogs are inserted
at the ends of the plow. The plow operation maintains design rules and con-
nectivity so that it doesn't change the electrical structure of the circuit. Most
material, such as polysilicon, diffusion, and metal, may be stretched or com-
pacted by plowing; transistors and contacts may be moved, but their shape

will not change.

Plowing provides all the operations of a sticks-based system, while still
working with fully-fleshed geometry. If a large plow is placed to one side of a
cell and then moved across the cell, the cell will be compacted. If a large plow
is placed across the middle of the cell and moved, the cell will be stretched at
that point. A small plow placed in the middle of a cell can be used to open up
empty space for new transistors or wiring. Plowing may be used both on low-
level cells containing only geometry, and on high-level cells containing subcells
and routing. Plowing moves each subcell as a unit, without affecting the con-

tents of the subeell.

The implementation of plowing is dependent on corner stitching, abstract

lavers. and the edge-based design rules. Corner stitching provides the fast

15

Magic: A VLSI Layout System December 2, 1683

geometric operations used to search out plow areas. The abstract layers tell
Magic about materials that cannot be stretched or compacted (such as transis-
tors). The edge-based design rules indicate what must be moved out of the
way when a particular edge of material is moved. By working from the same
data structure used for editing and design-rule checking, the plowing operation
avoids- the overhead of converting between representations. See [11] for a

detailed presentation of the plowing operation and its implementation.

8. Circuit Extraction and Cell Overlaps

The Magic da?abase makes circuit extraction almost trivial for individual
cells. Because of the abstract layers and corner stitching, the circuit is almost
completely extracted to begin with. All that is needed is to traverse the tile
structure and record information about what connects to what. There is no
need to register layers or infer the structure and type of transistors and con-

tacts: all this information is represented explicitly.

For hierarchical designs, the situation is complicated when cells overlap.
Each cell uses a separate set of corner-stitched planes, so information from the
separate planes must be combined in order to find out what connects to what.
If arbitrary overlaps are allowed, then transistors may be split between cells,
or may be formed or broken by cell overlaps. In this case, circuits cannot be

extracted hierarchically, since the structure of a cell may be changed by the

Magic: A VLSI Layout System December 2, 1983

way it is used in its parents.

One approach to the overlap problem is to prohibit cell overlaps. This
has two drawbacks, however. First, it makes for clumsy designs, since overlap
areas must be placed in separate cells. This makes it harder to understand
designs and harder to re-use cells. Second, it doesn't eliminate the problems in
circuit extraction, since information will still have to be registered along the
boundaries of abutting cells. For example, a cell abutment can cause two

separate transistors to join together.

Instead of prohibiting overlaps, we decided to restrict them. In Magic,
c?lls may abut or overlap as long as this only connects portions of the cells
without changing their transistor structure. Overlaps and abuttments may not
change the type or number of transistors from what it would be without the
overlap (e.g. polysilicon from one cell may not overlap diffusion from another
cell. since this would create a new transistor). These restrictions can be
verified by using a special set of design rules in the part of the design-rule

checker that deals with cell overlaps.

Our solution still requires information to be registered between subcells,
but it allows the extracted circuit to be represented (and extracted) hierarchi-
cally. The extracted circuit for any cell consists of the circuits of its subcells,

plus the circuit of the cell itself, plus a few connections between the subcells.

- 17 -

Magic: A VLSI Layout System December 2, 1983

9. Routing

Routing is the single most important area where we hope Magic will speed
up the design process. Most of the Magic routing effort has been spent in two
areas: a) creating a channel router that can work around obstacles in the
channel (such as previously-placed interconnections and power and ground
routing); and b) developing an interface between grid-based routers and non-

)

gridded custom designs.

Magic uses a standard three-phase approach to routing. In the first
phase, called channel decomposition, the empty space of the layout is divided
up into rectangular channels. In the second phase, called global routing, nets
are processed sequentially to decide which channels will be crossed by each. In
the third phase, called channel routing, each channel is considered separately
and wires are placed to achieve the necessary connections within the channel.
Magic's channel decomposer (which is not yet implemented) will be based on
the bottleneck approach of the BBL system [1]. Global routing {also not yet
implemented) will use a standard wavefront approach [4]. Both of these will
use corner-stitching to keep track of the channel space. The channel router
has been implemented, and is an extended version of Rivest’s greedy router {9].
Magic does not provide placement tools: in our design style, placement is an

important architectural decision and must be handled by designers.

- 18 -

Magic: A VLSI Layout System December 2, 1983

to

V., V. v
7 {1//(A7

— w e
L]

Figure 8. An example of routing with a single-layer obstacle in the channel. The
router tries to avoid the thickest part of the obstacle if possible.

In order to make the routing tools useable in a custom design environ-
ment, we have developed a channel router that can work around obstacles in
the channels. It is important for designers to be able to wire critical nets by
hand, and to have the automatic routing tools route the less critical nets
without affecting the hand-routed ones. It is also convenient to run power and
ground routing tools as a separate step before signal routing, and have the sig-
nal router work around the power and ground wires. Where there are obsta-
cles in the channels, Magic will route under them if possible, and will route
around those that block both routing layers. For very large obstacles in one
layer, such as a wide metal ground bus, Magic can make interconnections
under the obstacles using river-routing. See [2] for details on how Rivest’s
greedy router has been extended to handle obstacles. Figure 6 shows an exam-

ple of results produced by the Magic router.

- 19 -

Magic: A VLSI Layout System December 2, 1983

The evasive router, combined with plowing and the other editing features,
provides designers with considerable flexibility. Critical signals and power and
ground can be routed by hand. Then the router can be invoked to complete
the rest of the interconnections. If the router is unable to make all connec-
tions, the final ones can be placed by hand. Or, plowing can be used to re-
arrange the placement and the router can be re-run. The plowing operation

will maintain the existing connections.

We have also extended the standard routing approach to handle designs
that are not based on a uniform routing grid. Most channel routers assume a
uniform grid based on the minimum wire spacing: channel dimensions must be
an integral num'ber of grid units, and all wires must enter and leave channels
on grid points. Unfortunately, custom cells are not usually designed with the

router's grid in mind, so the cell boundaries and terminals do not line up on a

Original Cell Boundary

P

[

”_j

: "—'_ Sidewalk
1 -<F :‘

Expanded Cell Boundary

Figure 7. In the sidewalk approach, each cell is enlarged so that its boundary is
grid-aligned. Then connections on the edge of the original cell are routed to grid
points on the outside of the sidewalk.

- 20 -

Magic: A VLSI Layout System December 2, 1983

master grid. We are experimenting with two approaches to this problem,

called sidewalks and flexible grid.

The sidewalk approach is illustrated in Figure 7, and involves a pre-
routing step where all cells are expanded so that their dimensionsn are integral
grid units. This additional cell area is called its stdewalk. In addition, wires
are added to connect the terminals of the cell to grid points on the outer edge
of the sidewalk. After the sidewalk generation stage, everything is grid
aligned so standard routing tools can be used. Magic currently implements the
sidewalk approach. Sidewalks are inefficient because the sidewalk areas can-
not be used for channel routing, even though they usually contain little
material. Sidewalks typically cause the channels to be reduced in size by 2-3

tracks and 2-3 columns.

partial
/ column

/

— *

\ partial
track

(a) (b)

Figure 8. Rather than expand cells to grid points as in the sidewalk approach, the
flexible grid approach modifies the track and column structure of the channel. The
channel is grid-based in the center, but the grid lines jog at the edges to meet up
with non-gridded connections. (a) shows the standard orthogonal channel structure,
and (b) shows a channel whose grid structure has been fexed. The flexible grid ap-
proach can result in tracks or columns that don't extend all the way across the chan-
nel.

Magic: A VLSI Layout System December 2, 1983

The flexible grid approach distributes the sidewalks among the channels
by jogging the track and column structure at the ends to match up with con-
nection points that don't fall on grid lines. This is illustrated in Figure 8. In
the flexible grid approach, wasted space occurs within the channel because
some columns and channels cannot extend all the way across the channel.
However, there appears to be less wasted space in this approach than in the
sidewalk approach. In the worst case, the wasted space is equivalent to two
tracks and two columns per channel. If connection points are sparse, however
(and this is usually the case), the flexible grid approach has almost zero wasted

space. We are still in the early stages of exploring this alternative.

10. User Interface

Magic displays the layout on a color display, and users invoke commands
by pointing on the display with a mouse and then pushing mouse buttons or
typing keyboard commands. Magic provides multiple overlapping windows on
the color display. Each window is a separate rectangular view on a layout.
Different windows may refer to different portions of a single cell, or to totally
different cells. Windows allow designers to see an overall view of the chip
while zooming in on one or more pieces of the chip; this permits precise align-
ments of large objects. Information can be copied from one window to

another.

Magic: A VLSI Layout System December 2, 1983

11. Technoldgy Independence

Although Magic contains a considerable amount of knowledge about
integrated circuits, the information is not embedded directly in code. All the
circuit information is contained in a technology file that Magic reads. This file
defines the abstract layers for a particular technology, the corner-stitched
planes used to represent them, and the assignment of abstract layers to planes.
It tells how to display the various layers and defines the semantics of the paint
and erase operations from Section 5 (for example “if poly-metal-contact is
painted over diffusion, erase the diffusion and place poly-metal-contact tiles on
both the poly-diff and metal planes”). The technology file contains the design
rules used in design-rule checking and in plowing. Lastly, it tells how to fill in
the structural details of transistors and contacts when generating CIF for cir-
cuit fabrication. The technology file format is general enough to handle a
variety of nMOS and CMOS processes. Our technology file for an nMOS pro-

cess with buried contacts and single-level metal contains about 130 lines.

12. Implementation

The implementation of Magic was begun in February of 1983. By early
April 1983, a primitive version of the system was operational. Although the
first system was based on corner stitching and abstract layers, it provided user

features only equivalent to Caesar. During the summer of 1983 implementa-

-923.

Magic: A VLSI Layout System December 2, 1983

Subsystem Implementation Status
"Edge-based DRC Operational 9/1/83
Hierarchical and Continuous DRC Operational 11/1/83

Circuit Extraction Not begun

Plowing Simplified version operational 10/1/83

Full version expected 1/1/84

Net List Editing Operational 5/1/83

Channel Decomposition Expected 1/1/84

Global Router Expected 2/1/84

Channel Router with Obstacle Avoidance Operational 10/1/83
Multiple Windows Operational 11/1/83

Table II. The implementation status of Magic.
tion was begun on the subsystems for routing, multiple windows, plowing, and
design-rule checking. As of this writing, most of the advanced features are
either operational or expected to be operational in the near future. See Table
II. The system has been in use since April 1983 by the designers of a 32-bit
microprocessor [8], and since September 1983 by several dozen students in an

introductory VLSI design class.

Operation Speed
Painting tiles into
corner-stitched database

200 tiles/sec.

Design-rule checking 200 tiles/sec.
Simplified Plowing 100 tiles/sec.

Channel routing (‘*'Deutsch’s
difficult example,” 80 nets)

3 sec.

Table ITI. Some sample measurements of the speed of the Magic system. All meas-
urements were made on a VAX-11/780.

Magic: A VLSI Layout System December 2, 1983

Magic is written in C under the Berkeley 4.2 Unix operating system for
VAX processors. The current implementation works only with AED color
displays with special Berkeley microcode extensions. Altogether, Magic con-
tains approximately 45000 lines of code. Table IO gives a few sample perfor-

mance measurements of pieces of the system.

13. Conclusions

We have not yet had enough designer experience with Magic to evaluate
the system thoroughly, but the initial response has been favorable. The only
major problem encountered so far has been one of education: if designers are
accustomed to working with zctual mask layers, then the abstract layers in
Magic are confusing at first. This problem was exacerbated in the early ver-
sions of the system because the design-rule checker wasn't implemented. With
continuous feedback from the checker, we hope that it will be much easier for
desigﬁers to learn the abstract layers. We expect that the abstract layers will
be easier for designers to work with than the actual mask layers, since they

hide many irrelevant details.

The pieces of the Magic system work well together. Corner stitching
appears to be a complete success: it provides all the operations needed to
implement Magic's advanced features, and results in simple and fast algo-

rithms. The design-rule checker's edge-based rule set meshes well with the

Magic: A VLSI Layout System December 2, 1983

corner-stitched data, and is used also for plowing. The abstract layers simplify
the design rules, provide information needed for plowing and circuit extrac-

tion, and simplify the designer’s view of the layout.

We hope that Magic's flexibility will change the VLSI layout process in
two ways. First, we hope that it will enable designers. to experiment much
more than previously. At the cell level, they can use plowing to rearrange
cells quickly and easily. Cells can be designed loosely, then compacted. At
the chip level, plowing and the routing tools can be used together to re-
arrange the floorplan, route the connections, compact or stretch, and try
again. The ability to experiment means that students will be able to develop
better intuitions about how to design chips; it also means that designers will

be able to fix bugs and enhance performance more easily.

Second, we hope that Magic will make it easier to reuse pieces of designs.
To design a new chip, a designer will select cells from a large library, use
plowing and painting to make slight modifications in their shape or function to
suit the new application, and perhaps design a few new cells. Then the rout-
ing tools will be used to interconnect the cells. We hope that this approach

will result in a substantial reduction in design time for large circuits.

Magic: A VLSI Layout System December 2, 1983

14. Acknowledgements

As tool builders, we depend on the Berkeley design community to try out
our new programs, tell us what's wrong with them, and be patient while we fix
the problems. Without their suggestions, it would be extremelf difficult to
develop useful programs. The SOAR design team, and Joan Pendleton in par-
ticular, have been invaluable in helping us to tune Magic. Randy Katz, Dave
Patterson, and Carlo Séquin all provided helpful comments on this paper. The
Magic work was supported in part by the Defense Advanced Research Projects
Agency (DoD) under contract N00034-K-0251, and in part by the Semiconduc-

tor Research Cooperative under grant number SRC-82-11-008.

15. References

(1] Chen, N.P., Hsu, C.P., and Kuh, E.S. *“The Berkeley Building-Block Lay-
out System for VLSI Design.” Memorandum No. UCB/ERL M83/10,
Electronics Research Laboratory, University of California, Berkeley,
February, 1983.

(2] Hamachi, G.T. 2ad Ousterhout, J.K. “A Switchbox Router with Obstacle
Avoidance.” In this technical report.

[3] Keller, K.H. and Newton, A.R. “KIC2: A Low-Cost, Interactive Editor for

Integrated Circuit Design.”” Proc. Spring COMPCON, 1982, pp. 305-308.

Magic: A VLSI Layout System December 2, 1983

(4]

(5]

(6]

8]

[10]

[11]

Lee, C. Y. “An Algorithm for Path Connections and Its Applications.”
IRE Transactions on Electronic Computers, September 1961, pp. 346-
365.

Ousterhout, J.K. “Caesar: An Interactive Editor for VLSI Layouts.” VLST

Design, Vol. II, No. 4, Fourth Quarter 1981, pp. 34-38.

Ousterhout, J.K. “Corner Stitching: A Data Structuring Technique for
VLSI Layout Tools.” Technical Report UCB/CSD 82/114, Computer Sci-
ence Division, University of California, Berkeley, December 1982. To

appear in IEEE Transactions on CAD/ICAS, January 1984.

Ousterhout, J.K. *“The User Interface and Implementation of Caesar.”
Technical Report UCB/CSD 83/131, Computer Science Division, Univer-
sity of California, Berkeley, August 1983.

Patterson, D.A. ed. “Smalltalk on a RISC.” Final reports from CS292R,
Computer Secience Division, University of California, Berkeley, April 1983.

Rivest, R.L. and Fiduccia, C.M. “A Greedy Channel Router.” Proc. 19th

Design Automation Con ference,” 1982, pp. 418-424.

N

Rosenberg, J. et al. ‘A Vertically Integrated VLSI Design Environment.”

Proc. 20th Design Automation Con ference, 1983, pp. 31-36.

Scott, W.S. and Ousterhout, J.K. “Plowing: Interactive Stretching and

Compaction in Magic.” In this technical report.

.98 -

Magic: A VLSI Layout System December 2, 1983
[12] Taylor, G.S. and Ousterhout, J.K. “Magic’s Incremental Design Rule
Checker.” In this technical report.

[18] Weste, N. “Virtual Grid Symbolic Layout.” Proc. 18th Design Automa-

tion Con ference, 1981, pp. 225-233.

[14] Williams, J. “STICKS - A Graphical Compiler for High Level LSI

Design.” Proc. 1978 National Computer Con ference, pp. 289-295.

- 929 -

