Plowing:
Interactive Stretching and Compaction in Magic

Walter S. Scott and John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstract

The Magic layout editor provides a new operation called plowing, for stretch-
ing and compacting Manhattan VLSI layouts. Plowing works directly on the
~ mask-level representation of a layout, allowing portions of it to be rearranged
while preserving connectivity and layout-rule correctness. The layout and
connectivity rules are read from a file, so plowing is technology indepencent.
Plowing is fast enough to be used interactively. This paper presents the plow-
ing operation and the algorithm used to implement it.

Keywords and Phrases: interactive layout editor, stretching, compaction.

The work described here was supported in part by the Defense Advanced Research Pro-
jects Agency (DoD) under Contract No. N00034-K-0251

1. Introduction

Plowing is a new operation provided by the Magic layout editor
[OHMST 84] for stretching and compacting Manhattan VLSI layouts. It
allows designers to make topological changes to a layout while lmaintaining
connectivity and layout rule correctness. Plowing can be uséd to rearrange
the geometry of a subcell, compact a sparse layout, or open up new space in a
dense layout. In a hierarchical environment plowing also allows cell placement
to be modified incrementally without the need for rerouting. To avoid depen-
dence on a particular technology, plowing is parameterized by a set of layout

and connectivity rules contained in a technology file.

{'——' diffusion

E
’

A
i/

°

OSSN

AN
Caa

|

AN

:—0

A S SSSEEREERSOSNSENANNNAN

N

plow distance—=+

LS

AR RN

NN NN NRR R RRRNY

T EEENEERESASSEANSNNAN

NN
NN

{before) (after)

Figure 1. Plowing opens up new space in a deanse layout. Geometry is pushed in
front of the plow, subject to layout-rule constraints. The connectivity of the original
layout is maintained. Jogs are inserted automatically where necessary.

Plowing December 2, 1683

Conceptually the pfowing operation is very simple. The user places either
a vertical or a horizontal line segment (the plow) over some part of a mask-
level representation of the layout, and then gives the direction and the dis-
tance the plow is to move. Plowing can be done up, down, to the left, or to
the right. (The rest of this paper will assume plowing to the right.) The plow
is then moved through the layout by the distance specified. It catches vertical
edges (boundaries between materials) as it moves and carries them along with
it. Since only edges are moved, material behind the plow is stretched and
material in front of the plow is compressed. Figure 1 shows how plowing can
be used to open up new space. Figure 2 shows how it can be used for stretch-
ing. Plowing can be used to compact an entire cell by placing a plow to the

left and plowing right, then placing a plow at the top and plowing down.

diffusjon — "

transistor &

v ‘ ! ‘
! ot S A
tj y // s ,{
24 [goly
ECENE! NN | T K
L A i j
V% 7
;/{] =N T / =
TN ——ﬁ-,————-—-’f v RN NN
1 A '
L L

(before) (after)

Figure 2. Material to the left of the plow is stretched. Material to the right is
compressed. Objects such as transistors do aot change in size.

[]

Plowing December 2, 1983

Plowing is so named because each of the edges caught by the plow can
cause edges in front of it to move in order to maintain connectivity and
layout-rule correctness. These edges can cause still others to be moved out of
the way, recursively, until no further edges need be moved. A mound of edges
thus builds up in front of the plow in much the same manner as snow builds

up on the blade of a snowplow.

Section 2 of this paper discusses plowing in the context of previous work.
Sections 3 and 4 introduce the plowing algorithm for a single mask layer. Sec-
tion 5 extends it to multiple mask layers and hierarchical designs. Finally,
Section 6 presents performance measurements and our experience with plowing

in the Magic system.

2. Backgiound

VLSI lavouts are difficult to modify. Because of this, designers are often
committed to the initial choice of implementation, rather than being able to
experiment with alternatives. Existing cells often cannot be re-used in subse-
quent designs because they don’t quite fit; it is typically easier to redesign a
new cell from seratch than to modify an old one. Bugs in a dense layout are

hard to fix, leading to a debugging cycle which can take days.

Many of these difficulties stem from the fact that seemingly small changes

to a layout can have disproportionately large effects. Sometimes this is for

Plowing " December 2, 1983

electrical reasocns. For example, in ratio logic such as nMOS, changes in the
size of one transistor may necessitate changes in the sizes of others. However,
even purely topological changes—those which preserve the electrical properties
of the layout—can require much more work than the size of the change would
suggest. As Figure 1 illustrated, merely opening up new space in a layout can
cause effects which ripple outward over a much larger area. Rearranging the
internal geometry of a.cell or modifying the placement of cells in a floor plan
can be similarly expensive because of the need to maintain ccnnectivity with

the surrounding material.

Previous attempts to cope with the re-arrangement problem have used
symbolic design or sticks [RBDD 83, West 81, Will 78]. In the symbolic/sticks
approach, designers enter layouts in an abstract form containing zero-width
wires, contacts, and transistors. The sticks form is then run through a com-
pactor to generate actual mask information. As part of the compaction, the
circuit elements are moved as close together as the layout rules permit. In a
sticks design style, cells can be designed loosely without worrying about exact
spacings, since the spacings will be determined by the compactor. However, it
is not necessarily easy to make major changes to a sticks cell once it has been
entered. Virtual grid systems like Mulga and VIVID provide mechanisms for
adding new grid lines uniformly across a cell, but it is still difficult to make

large topological changes.

Plowing December 2, 1983

Tﬁe plowing approach has all the advantages of sticks. It allows cells to
be designed loosely and then compacted. In addition, plowing can be used to
rearrange cells or open up new space, either across the whole cell or in one
small portion. Small changes can be made in one area without having to
recompact the entire cell (a global recompaction may potentially shift every
geometry in the cell). The plowing approach lets the designer see the final
sizes and locations of all objects as he is editing; in the sticks approach, it is
hard to predict the final structure of a cell from its abstract form, so compac-

tion must be used frequently to see the results of a change to the sticks.

3. Simple plowing algorithm

Plowing works by finding edges and moving them. An edge is 2 boun-
dary, parallel to the plcw, between material of two different types. When an
edge moves, the material to its left is stretched, and the material to its right is
compressed. In this section we will describe how plowing works when only a
single mask layer is present. This material wiil be assumed to have a
minimum width of w, and a minimum separation of s. Edges will always be

boundaries between this material and “‘empty’ space.

The fundamental step in plowing is to move a single edge. This step
involves determining which other edges must move as a consequence of this

motion. The following discussion presents plowing as though it moves a given

Plowing December 2, 1983

edge by first recursively sweeping all other edges out of its way, and then slid-
ing the edge into the newly opened space. Section 4 will present a better

scheme for ordering edge motions than this depth-first recursion.

3.1. Finding edges

Figure 3 depicts a trivial layout consisting of three unconnected pieces of
diffusion. The edge labelled e is to be moved to a final position indicated by
the arrowhead. This could be either because e was caught by the plow, or
because it is being moved to make room for some edge to its left. At a very
minimum, the rectangular area labelled A must be swept clear of any material
before the edge can be moved. However, because of the spacing rule, any

material inside area B would then be too close to the newly moved edge. Con-

diffusion

\T
N
le——1

N

N
\\\\
«\1
\\

— violation

AN

N
N
!
AN
NN

N\

I T

AN

“ONON
N\
Y

N

..............

NN
AR
\
\

Figure 3. When the edge e moves, all edges in area A (the area swept out by ¢}
must be moved (a). Moving only these edges results in edge f/ moving but not edge
g. This leaves a layout-rule violation (b) between e and g. Searching area B as well
as area A avoids this problem. The two areas are referred to collectively as the um-
bra of edge e.

Plowing December 2, 1983

sequently, the area to be swept includes both areas A and B. The union of

these two areas is referred to as the umbra of the edge e*.

Plowing must also search above and below the umbra to prevent the edge
from siiding too close to other edges above or below it. Figure 4a shows why
this is necessary. If material were moved out of the umbra alone, as in Figure
4b, the result is electrical disconnection. To avoid this, plowing must also

move edges out of the areas above and below the umbra. The correct result 1s

“«—E —>

v

NN

.

%
7z
(a) (b)

Figure 4. When the edge ¢ moves (a), edges in its umbra must be moved to the
right. If ooly edges in the umbra are moved, however, the result can be electrical
disconnection (b). To avoid this, plowing also moves edges in the penumbra to the
right, giving the correct result shown in (c). This has the effect of inserting jogs au-
tomatically. The height of the penumbra is w, the minimum-width for diffusion. If
diffusion had been to the left of e instead of to the right, the height of the penumbra
would have been s, minimum-separation.

MR

N\

* In a solar eclipse, the umbra is that portion of the moon's shadow from which the sun
appears to be completely eclipsed. The penumbra is the part of the shadow surrounding the
umbra from which the sun appears only partially eclipsed. In plowing, the umbra contains
edges directly in the path of an edge being moved. while the penumbra coatains edges not in
the path but nonetheless too close.

-1

penumbra

Plowing December 2, 1983

shown in Figure 4c. The areas above and below the umbra are referred to col-
lectively as the penumbra. Jog insertion is an automatic consequence of
searching the penumbra. Moving edges out of the penumbra also prevents
electrical shorts, as can be seen by reversing the roles of material and space in

Figures 4a-4c.

The left-hand boundary of the penumbra is not always aligned with the

edge being moved. Instead, this boundary is formed by following the outline

-f

R ‘ /é 7

(b)
v
V/
A —5 A sk

(c) (d)

Figure 5. If ¢'s penumbra included all of area .4, as shown in (a), then edge f would
be found and moved, resulting in (b). This is undesirable, since f need not move in
order to preserve layout-rule correctness and connectivity. A better definition of the
penumbra would be area 3 only, as shown in {c). Searching this area would result in
only the edge 7 being found and moved, as is necessary to preserve layout rule
correctness.

Plowing | December 2, 1983

of the material forming the edge, as illustrated in Figure 5. This insures that
the penumbra contains only those edges which must move in order to preserve
lavout rule correctness and connectivity. The umbra and penumbra of an
edge are collectively referred to as its shadow. The shadow of e contains all

the edges which must move as a direct consequence of moving e.

3.2. Sliver prevention

The rules described in Section 3.1 guarantee that plowing never moves
one vertical edge too close to another. However, they do allow violations to be
introduced between horizontal segments that are formed when material is
stretched. These violations take the form of slivers of material or space whose
height is less than the minimum allowed. Eliminating such slivers requires
that their left-hand edges be moved, as illustrated in Figure 6. The left-hand
edge of each sliver lies along the left-hand boundary of the penumbra, <o it

can be found when tracing the outline of the penumbra.

— ////

- 2

4 — violation '

«—»n —»

N
v

\\\\\f

(a) (b) (c)

Figure 8. When the edge ¢ moves (a), a sliver of space is introduced below the hor-
izontal segment 4, as shown in (b). To correct this, the left-hand edge of this sliver,
7. is moved along with e, but only as far as the right-hand end of the segment A {c).

Plowing December 2, 1983

N

N
N

1 (& 3

7
1 /// 4,4// 147/
37

N

31

ASNNN

N

SN
N
N
\,_

PN

N

Figure 7. This lattice structure causes exponential worst-case behavior in the
deptb-first plowing algorithm when edges in the shadow are processed from top to
bottom. The objects (A, B, etc.) must be incompressible to cause this worst-case
behavior. Object B is moved once when object A moves, then slightly farther when
object C moves. The numbers to the left of each object show how many times each
of its edges is moved.

4. Breadth-first vs. Depth-first Search

In the previous section, plowing was described as a depth-first search in
which all edges to the right of a given edge were moved before the edge itself.
While this approach is conceptually clear, it has poor worst-case behavior. An
N-tier lattice structure as illustrated in Figure 7 requires on the order of 2V
edge motions, because plowing performs the recursive search to the right of an
edge each time the edge is moved. If, as in the example, each edge must be
moved once for each of its two neighbors to the left, the edges at the right-
hand side of the lattice are moved a number of times that is exponential in the

number of tiers.

- 10 -

Plowing December 2, 1983

Instead, plowing waits until the final position of an edge is known before
it performs the search to the right of that edge. This strategy causes the
number of edge motions to be linear in the number of edges in the lattice. (A

detailed explanation is given in [Oust 84].)

A simple way to insure that edges are moved only once their final posi-
tions are known is to use breadth-first search. Magic maintains a list of edges
to be moved, sorted in order of increasing z-coordinate. On each iteration, the
leftmost edge is removed from the list and the shadow to its right is searched.
Any edges discovered by this search are placed in the list along with the
amount they must move. Since the final position of an edge can .only be
affected by .edges to its left, the final position of the leftmost edge in the list is

always known.

The depth-first algorithm allowed the layout to be modified incrementally
as plowing progressed, since an edge was never moved until the area into
which it was moving had been cleared. Incremental modification is impossible
with breadth-first search, since edges to the right will not be moved as long as
there are queued edges to the left of them waiting to be moved. Instead of
actually updating the layout as it progresses, the breadth-first version of plow-
ing stores with each vertical edge segment the distance it moves. When the
shadows of all edges have been searched. and the distance each edge moves

has been determined, plowing invokes a post-pass to update the layout from

- 11 -

Plowing December 2, 1983

the information stored with each edge.

However, if the layout is not modified until all edges have been processed,
special care must be taken to avoid the generation of slivers. Figure 8 illus-
trates the problem. To process each edge correctly, it is important to know
what other edges have been already been processed and what their final posi-
tions will be. In general, the plowing algerithm must consider edges whose
final positions will be in the shadow, rather than those whose initial positions
are in the shadow.

The success of the breadth-first algorithm depends on the fact that left-

to-right plowing never changes the order of edges along any horizontal line,

and never changes any vertical coordinates. Furthermore, edge has stored

f (initial) f (eventual) violati
iolation

Figure 8. When processing an edge in the breadth-first approach, it is important to
use information about the final positions of edges that have already been processed.
In (a), it has already been decided to move edge f, but the edge will not actually be
moved until all other edges have been processed. If edge ¢ is processed without con-
sidering the new position of f, a sliver will result as shown in (b). Instead, the plow-
ing algorithm must comsider the eventual positions of edges that have already been
processed, to produce the result of {c).

.12

Plowing December 2, 1983

with it the distance it is going to move. As a comsequence, plowing can use
the initial layout structure for searching, and yet can easily find all objects

whose final coordinates fall in a given area.

5. Extensions for real layouts

This section extends the simple plowing algorithm of the previous two sec-
tions to handle multiple mask layers. Plowing is also extended to handle
features, such as transistors and contacts, whose size should not be changed,
and to allow noninteracting mask layers, such as metal and polysilicon, to slide
past each other. Finally, since layouts in Magic may be hierarchical, this sec-

tion closes with a description of how plowing handles hierarchy.

5.1. Multiple mask layers

The simple version of plowing assumed that the shadow extended to the
right of the final position of a moving edge by either w (the minimum-width
rule) if material lay to the right of the edge, or s (the minimum-separation
rule) if material lay to the left of the edge. This insured that the shadow
included all edges directly in the path of the edge being moved. Since the
same lavout rule applied between the edge being moved and any other edge,

all edges found during the search of the shadow would have to move.

With more than one mask layer there may be more than one layout rule

to apply for a given edge. For example, in our aMOS process, the minimum

- 13-

Plowing December 2, 1983

separation between diffusion and polysilicon is 2 microns, while that between
two pieces of diffusion is 8 microns. Both of these rules apply at an edge

between diffusion and empty space.

To insure that the shadow contains all edges which must move, the sha-
dow must extend beyond the area the edge sweeps out by the worst-case lay-
out rule distance applying to that edge. As Figure 9 illustrates, however, not
all of the edges found in the shadow search will actually need to move. Each
edge found must be checked for its minimum allowable separation from the
edge being moved. Fortunately, this can be done very quickly using the same

techniques as those used in Magic’s incremental layout-rule checker [TaOu 84).

4 microns

’—— polysilicon "

7 — polysilicon
/ >

/ My

oy f / /

// 7 gy

s » :

4 : e

Zn M

s /// e \" -

S | T

Y ; i — diffusion

Figure 9. The area of a shadow search is determined by the worst-case layout rule.
However. not all edges in that area will have to be moved. Edge [must move, be-
cause the separation between two polysilicon features must be 4 microns and edge ¢
approaches to within 2 microns of f. Edge g need not move since the minimum
separation betweena polysilicon and diffusion is only T microns.

- 14-

Plowing

AN

December 2, 1983

AN

penumbra for B

Figure 10. An edge between two different types of material has a penumbra for
each. The spacing rules for material of type A are applied in A’s penumbra. The
minimum-width rule for material of type B is applied in B’s penumbra. The sizes of
each penumbra may be different because of the different layout rules applied in each.

If the edge being moved has material on both sides, there is really a

penumbra for each type of material. The layout rules applied while searching

each penumbra will in general be different. Slivers must be prevented along

the boundaries of both penumbra. See Figure 10 for an example.

2
70

.
N7
(2)

Il I
//é/é} | %v// — =
AL [T]

F—

3

4
.

Nz

|
1
|

(b) b (c)

Figure 11. If edge e is plowed, material A may disconnect from B and C. To
prevent this, 3 minimum-width segment of edges f and g is dragged along with e.
The edge 7 is moved not to maintain connectivity (which would have been achieved
by moving k), but to prevent C from being uncovered. In (c), m1 is the lesser of the
minimum widths for A and B, m2 is the minimum width for B, and m& is the

minimum width for C.

Plowing December 2, 1983

Multiple mask layers require extra caution to maintain connectivity with
material above and below an edge being moved. In the single-layer scheme,
the penumbra search guarantees that the material does not become discon-
nected. However, the penumbra search follows the outline of a single type of
material, so it will not by itself guarantee that two adjacent materials of

different types will remain connected (see Figure 11).

Special actions must be taken during the penumbra search to handle hor-
izontal edges between different materials. First, if two materials share a hor-
izontal edge, then Magic guarantees that one material does not slide past the
end of the other: it maintains a minimum-width connection between the two
(this is the case between materials A and B in Figure 11). Second, if one
material completely covers the edge with another material (for example, the
A-C edge in Figure 11), Magic plows the other material as much as is needed
to maintain complete coverage. This ensures, for example, that transistors

don't get uncovered by plowing polysilicon off one side.

5.2. Inelastic features

Certain features in a layout should not be stretched or compacted.
Transistors, for example, have sizes chosen for electrical reasons, as do con-
tacts. Our discussion of edge motion has assumed that the material forming
both sides of the edge was stretchable. When material is inelastic, both its

left-hand and right-hand edges must be moved in tandem. In particular, if the

- 186 -

Plowing December 2, 1983

SR AKX ~ " X X X KA
S +
KX -
XX K KD X X X >) (X
‘j{‘\j}.::\: e — ;j\::\.j}\:t
< e <
<€ d 'S « d »
s —_—
(a) (b)

Figure 12. When inelastic objects are present, plowing may have to cope with cir-
cular dependencies. Material B is inelastic, and A and C are both minimum-width.
When edge e moves by distance d in (a), object B must move by the same distance
to prevent A from being uncovered. To prevent C from being uncovered, C’s left-
hand edge must move, finally causing edge f to move by distance d. Edge eis in f's
shadow as a result, but should not be moved a second time.

right-hand edge of a piece of inelastic material moves, its left-hand edge must

move also.

A consequence of inelasticity is that moving an edge can cause motion of
edges to its left, possibly resulting in a circular dependency. The example in
Figure 12 illustrates such a dependency. The depth-first plowing algorithm is
completely incapable of resolving such a dependency. The breadth-first algo-
rithm resolves it by comparing the amount an edge is supposed to move with
the motion distance already stored with the edge. If the stored motion dis-

tance is greater, the edge need not be moved a second time.

If the distance d between edges f and e in Figure 12 is less than s, the
minimum separation allowed (ie, there is currently a layout rule violation),

looking at the motion distance of e is insufficient. When the shadow of fis

- 17 -

Plowing December 2, 1983

searched, plowing is supposed to move all edges found far enough away so that
they cause no rule violations with the newly moved f. This would mean that
edge e would have to move by d+s-r, which is more than the motion distance
stored with the edge. As a result, the plowing algorithm loops infinitely, each
time moving edge e by an additional s-r. To avoid infinite walks, plowing
pever moves a shadowed edge {eg, e) more than the edge causing the shadow
(eg, f). This technique prevents infinite looping, but preserves layout rule vio-

lations existing in the original layout.

5.3. Noninteracting planes

Section 4 explained that the order of vertical edges along a horizontal line
is unchanged by plowing. Thus material being plowed can never slide over
other material in its path. There are cases, however, where it is desirable that
certain materials in a layout move independently. Metal, for example, does
not interact with either polysilicon or diffusion except at contacts, so it should

be able to slide over them.

To allow sliding, Magic segregates the mask information in a layout into a
collection of non-interacting planes. Material in one plane is free to slide past
material in any other plane. The nMOS technology, for example, has two
planes: one to hold metal wires, and one to hold polysilicon, diffusion, and

transistors.

Plowing December 2, 1983

contact

metal

contact _""'—, 5

{ L ; L L ;

T

polysilicon)
(a) (b)

Figure 13. A contact is duplicated on each plane it connects. When an edge of a
contact is moved on one plane, it is moved on all other planes as well.

The plowing algorithm operates on each plane independently. The only
interaction between planes occurs at contacts, which are duplicated in each
plane that they connect. When an edge of a contact is moved in one plane,
the corresponding edge of the contact in all other planes is moved by the same
amount, as illustrated in Figure 13. This also moves whatever the contact

connects to in the other planes, thus preserving connectivity.

5.4. Subcells and hierarchy

One approach for plowing a hierarchical Jayout, such as that shown in
Figure 14a, is to treat it as though it were non-hierarchical and propagate
edge motions inside subcells. This might be workable when no subcell is used
more than once. Howevér, Magic instantiates subcells by reference, so a
change in one instance of a subcell is reflected in all its other uses. Situations
in vhich a subcell is used more than once can produce unsatisfiable sets of

c.ostraints. as Figure 14b illustrates.

- 19 -

Plowing December 2, 1983

I | 7
1 i iz, Y
teA 7K : %; ! %u
71 i T Y
178 A : ﬁ :M%:
;; B A B
(before) (alter)
.
i
I é:é:
T
VA |//|
L’; __J.B_I
r—-" 7T~ =
| |
! |
(b) (before) : : (conflict)

Figure 14. Plowing in the presence of hierarchy. (a) Plowing might treat hierarchy
as though it were invisible to the user. Each of cells 4 and B would be modified. (b)
Cell C is used twice, once flipped left-to-right and once in its normal orientation.
Both uses refer to the same master definition of C. Moving edge ¢ to the right is im-
possible, because it requires e to move to the left in order to keep out of its own
path. The more edge ¢ is moved to the right in the left-hand use, the worse the vio-
lation becomes.

Magic takes a simpler approach, which is to view subcells as black boxes
‘o which connectivity must be maintained by plowing, but whose internal

structure should not be modified. A consequence of Magic’'s approach is that

- 90 -

Plowing December 2, 1983

plowing can be used to modify the placement of cells at the floor plan of a

chip, since it only changes the location of subcells, not their contents.

When any mask geometry that abuts or overlaps a cell is moved, the
entire cell must move by the same amount. Conversely, whenever a subcell
moves, all mask geometry and other subcells that abut or overlap it must also
move by the same amount. The net effect is that a cell behaves like flypaper,
causing all geometry over its area to ‘“stick” to it and move as a whole when

any part of it is required to move.

In addition to preserving connectivity with subcells, when plowing moves
other geometry it must avoid introducing any lahout rule violations with the
geometry inside a subcell. On'e approach for dealing with this is to define a
protection frame [Kell 82] for each cell, an outline around the cell into which
no material may be plowed. Magic uses an extremely simple form of protec-

tion frame: it assumes that the cell contains all types of material right up to

the border of its bounding box.

For example, in our aMOS rule set, the worst-case layout rule involving
diffusion is the diffusion-diffusion spacing rule of 6 microns. An edge with
difusion to its left can be plowed to within 6 microns of a subcell before that
subeell will itself have to move. The worst-case rule distance involving polysil-
icon is 8 microns, so polysilicon can only be plowed to within 8 microns of a

subcell before the cell must move. Since the contents of subcells are con-

Plowing December 2, 1983

sidered unknown, the closest one subcell can be plowed to another before the
other will have to move is the worst-case layout rule in the entire ruleset,
which in our ruleset is 8 microns. Of course, if the user wishes to overlap two

cells, he can still do that using other editing operations beside plowing.

8. Results and experience

Plowing has been implemented as part of the Magic VLSI layout system.
It is written in C under the Berkeley 4.2 Unix operating system for VAXes. A
simplified version of plowing (corresponding to that described in Sections 3

and 4) has been operational since October of 1983.

While the full implementation of plowing has not been completed, meas-
urements on the simple version indicate that it is fast enough to be used
interactively. An example similar to that presented in Figure 1la, consisting of
48 parallel bars of polysilicon each separated by 4 microns {the minimum
separation), took 3.2 seconds of VAX-11/780 CPU time to produce a result
similar to that in Figure 1b. Only 1.0 seconds were spent computing the edge
motions; the remainder of the time was spent in the post-pass which actually

updates the layout.

(2]
(8]

Plowing Dccember 2, 1983

7. Acknowledgements

Gordon Hamachi, Robert N. Mayo, and George Taylor all contributed to
the discussions out of which the plowing algorithm arose. In addition to the
above people, Randy Katz, Ken Keller, and Steve and Jean McGrogan all pro-

vided helpful comments on early drafts of this paper.

The work described here was supported in part by the Defense Advanced

Research Projects Agency (DoD) under Contract No. N00034-K-0251

8. References

[RBDD 83] Rosenberg, J., Boyer, D., Dallen, J., Daniel, S., Poirier, C.,
Poulton, J., Rogers, D., Weste, N. “A Vertically Integrated
VLSI Design Environment.” Proceedings, 20th Design Auto-
mation Con ference, 1983, pp. 31-38.

[Kell 82] Keller, K., Newton, A. “A Symbolic Design System for
Integrated Circuits.” Proceedings of the 19th Design Automa-
tion Con ference, June 1982.

[Oust 81] Oustercout, JK. ‘“‘Caesar: An Interactive Editor for VLSL"
VLSI Design, Vol. II. No. 4, Fourth Quarter 1981, pp. 34-38.

[Oust 84] Ousterhout, J.K. ‘“Corner Stitching: A Data Structuring
Technique for VLSI Layout Tools.” To appear in IEEE Tran-
sactions on CAD/ICAS, Vol 3, No. 1, January 1984.

[OHMST 84] Ousterhout, J.K., Hamachi, G., Mayo, R.N., Scott, W.S., and
Taylor, G.S. “The Magic VLSI Layout System.” In this
technical report.

[TaOu 84] Taylor, G.S., and Ousterhout, JK. “Magic’s Incremental
Design Rule Checker.”” In this technical report.

-93.

Plowing December 2, 1983

[West 81 Weste, Neil. “Virtual Grid Symbolic Layout.” Proceedings,
18th Design Automation Con ference, 1981, pp. 225-233.

[Will 78] Williams, J. “STICKS- A Graphical Compiler for High Level
LSI Design.” Proceedings of the 1978 NCC, May 1978, pp.
286-295.

-04.

