
Using Texture Mapping with Mipmapping to Render a VLSI
Layout

Jeff Solomon
Computer Systems Lab

Stanford University

jsolomon@vlsi.stanford.edu

Mark Horowitz
Computer Systems Lab

Stanford University

horowitz@ee.stanford.edu

ABSTRACT
This paper presents a method of using texture mapping with mip-
mapping to render a VLSI layout. Texture mapping is used to save
already rasterized areas of the layout from frame to frame, and to
take advantage of any hardware accelerated capabilities of the host
platform. Mipmapping is used to select which textures to display
so that the amount of information sent to the display is bounded,
and the image rendered on the display is filtered correctly. Ad-
ditionally, two caching schemes are employed. The first, used to
bound memory consumption, is a general purpose cache that holds
textures spatially close to the user’s current viewpoint. The second,
used to speed up the rendering process, is a cache of heavily used
sub-designs that are precomputed so rasterization on the fly is not
necessary.

An experimental implementation shows that real-time navigation
can be achieved on arbitrarily large designs. Results also show how
this technique ensures that image quality does not degrade as the
number of polygons drawn increases, avoiding the aliasing artifacts
common in other layout systems.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: [Computer-Aided Design];
I.3.3 [Computer Graphics]: Picture/Image Generation—display
algorithms

Keywords
texture mapping, mipmapping, VLSI layout editor

1. INTRODUCTION
The field of computer graphics has produced two very well

known techniques for the display and manipulation of images:tex-
ture mappingandmipmapping[7]. These techniques were devel-
oped primarily as a way of efficiently displaying the same image
over and over, independent of magnification. Since many graphics
intensive applications have a need for such a feature, almost all spe-
cialized graphics platforms have dedicated hardware to accelerate
this function.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2001,June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006 ...$5.00.

The benefit of using texture mapping and mipmapping becomes
clear when considering the size of modern VLSI layouts. The num-
ber of rectangles1 in modern layouts can run into the tens or hun-
dreds of millions. Displaying each of those rectangles at once can
take an unacceptably long time if done naively. In addition, when
viewed at low magnification, most of the rectangles can be smaller
than a single pixel in one or both dimensions; drawing them without
proper filtering, therefore, will produce noticable aliasing artifacts.

Thus, the goal of this work is to allow real-time navigation of
a VLSI layout independent of the size of the design, and to cre-
ate an accurate representation of the design at any magnification.
Additionally, the resources required to implement a usable solution
should be bounded.

The format of the rest of the paper is as follows. Section 2 re-
views texture mapping and mipmapping, laying the foundation for
the techniques used throughout the paper. Section 3 discusses how
an IC layout can be treated like a regular image and how previous
techniques have been developed to handle such images. Section 4
introduces the tiled texture pyramid which allows for the efficient
representation of an arbitrarily large IC layout as a mipmap. Sec-
tions 5 and 6 discuss how the texture tiles are created and man-
aged, and Section 7 explains how heavily used sub designs are cho-
sen and precomputed to further speed up the rendering process.
Section 8 discusses how this architecture is amenable to multi-
threading, which also speeds the rendering process and improves
tool responsiveness. Finally, Section 9 discusses the experimental
implementation and gives results showing the effectiveness of this
approach.

2. TEXTURE MAPPING AND
MIPMAPPING

A textureis a static image comprised of elements calledtexels.
The values contained in each texel can be any type of visual in-
formation such as intensity, transparency or, most commonly, red
green blue (RGB) triplets. A texel in a texture is distinguished
from a pixel on the screen in that a texel can represent more or less
area than a pixel depending on the texture’s final scaled size on the
screen.

Texture mapping, in its simplest form, is a way to apply a texture
as a decal to a polygon.Mipmappingis a way to specify down-
sampled views of a texture that are used to represent the texture
when it is scaled in the scene. Each down-sampled representation
of a texture is1/4 the size of the texture it was sampled from. When

1The overwhelming majority of polygons in VLSI layouts are rect-
angles. The rest of the paper will refer to layouts made up solely
of rectangles, although the techniques described could be readily
adapted to any type of polygon.

abstractly viewed with each mipmap level stacked on top of each
other, the whole data structure is known as amipmap pyramidor
simply as amipmap.

There are two primary advantages to using a mipmapped repre-
sentation. First, since the down-sampled textures are precomputed,
more care can be taken to produce an accurate representation than
if the filtering were done on the fly. Secondly, the down-sampled
textures are by definition smaller than the base texture, thus con-
suming less graphics bandwidth to display. The main disadvantage
of mipmapping is the increased memory footprint from storing the
levels of the mipmap pyramid.

When rendering a polygon with a mipmapped texture, the final
pixel values of the polygon are computed by determining thelevel
of detail (LOD) on a per pixel basis. The LOD is the ratio of the
pixel area to the area of texture to be drawn in the texture’s base
units. In the general case, the LOD computation is needed on a
per pixel basis in both thex andy dimensions because the polygon
to which the texture is mapped could have an arbitrarily oblique
orientation in the scene. In the specific case of rendering a 2D
image parallel to the screen, as is the case with IC layouts, the
same LOD applies to all pixels.

3. AN IC LAYOUT AS AN IMAGE MIPMAP
The concepts of texture mapping and mipmapping can be ap-

plied directly to IC layouts if the IC layout is first converted into
an image. This is done in the following way. The width and height
of the image is directly computed from the size of the layout and
the underlying grid resolution. For example, a1mm × 1mm lay-
out with a grid resolution of1µm would have a base image width
and height of 1,000. Once the base image width and height have
been determined, the next step is to rasterize the rectangles into the
image. This process is straightforward, because the grid resolu-
tion was chosen such that all rectangles have integer coordinates.
The rectangles in the layout can be rasterized into the base image
following any convention of layer stacking order or transparency.
Once the base layout has been rasterized, the higher mipmap lev-
els are generated by filtering down-sampled versions of the base
image.

To correctly down-sample an image, an ideal low-pass filter (a
sinc filter) can be applied that removes the appopriate high fre-
quencies. Usually though, an approximation of asinc filter, the
box filter, is used for such operations because it requires much less
computation, yet still provides acceptable quality. The definition of
the box filter used in this paper is to average the RGB values in a
2× 2 square of texels to obtain the new down-sampled value.

After the mipmap has been created for an IC layout, it can be
viewed as any other image. However, most, if not all, hardware
graphics implementations impose limits on the dimensions of the
base image used for texture mapping and mipmapping. Currently,
these limits range from 256 to 16384 texels on a side, creating a
severe restriction on the size of the IC layout that can be viewed
using standard mipmap techniques.

Tanner presents theclipmap[6] as a solution for viewing arbitrar-
ily large images. He observed that although the mipmap pyramid
may be huge, the portion that is currently visible at any one time
is bounded and small because of mipmapping and a fixed screen
resolution. The example used by Tanner was a 20 million by 20
million texture that represents an image of the Earth at one meter
resolution. Using specially modified hardware and optimized disk
caching techniques, the clipmap implementation is able to render
the texture of the Earth at any magnification in real-time.

The size of a modern microprocessor, when viewed as an image,
is comparable to the example used by Tanner. Consider a modern

n

n

n

n

n

n

Figure 1: A Tiled Texture Pyramid.

microprocessor that is20mm × 20mm on a side with a grid res-
olution of .01µm. This would lead to a base image of width and
height of 2 million texels. If each texel were 16 bits, the size of
just the base image would be 64 terabytes. While it would be pos-
sible to build a clipmap solution to this problem, the overhead of
hardware and disk usage would make it all but impractical for gen-
eral use. However, the synthetic nature of IC layouts obviates the
need to think of layouts solely as images. Notice that the canonical
form of an IC layout, such as acorner-stitched data structure[4], is
typically very small when compared to its size as a fully expanded
image. In corner-stitching, and other data structures like it, the total
memory cost is strongly related to the number of rectangles in the
design. This is in contrast to an image where the memory cost is
only related to the dimensions of its bounding box. These memory
costs would only be equal when the number of rectangles in the
design database were roughly on the order of the number of pixels
in the bounding box. This can only occur when the entire bound-
ing box is covered by small or unit dimension rectangles which is
a property not observed in any useful VLSI layouts.

Given this substantially reduced memory requirement, the imple-
mentation described here is able to keep the entire layout database
in memory which eliminates the need for any disk accesses.

The next section explains how only the visible portions of an
immense mipmap pyramid are created, giving the user the illusion
that the entire image has been expanded.

4. TILED TEXTURE PYRAMID
So far, each level of a mipmap pyramid has been thought of as

one texture. For large IC layouts, the size of all but the highest
levels in the pyramid could easily eclipse not only the hardware
limits of the host platform but also the size of main memory.

To circumvent this limit, the concept of atiled texture pyramidis
introduced. A tiled texture pyramid is distinguished from a mipmap
pyramid in that each pyramid level is an array of texture tiles where
the size of each of the tiles, in texels, is fixed. An example tiled
texture pyramid is shown in Figure 1.

The important distinction in the levels is that tiles in the upper
levels represent more layout area than those in lower levels even
though they physically consume the same amount of memory.

Using this tiled representation is important for three reasons.
First, the tile size is chosen to meet the hardware limits of the

host platform. This circumvents the restrictions that have been dis-
cussed earlier. Second, a tiled representation allows for a simple
way to create only the portions of a mipmap level that are needed
at any one time. Tanner presents a more complex approach that is
more efficient in managing massive mipmaps in the general case;
in the special case of IC layouts, however, a tiled pyramid approach
has no significant disadvantages2. Third, a tiled texture representa-
tion lends itself very well to a multi-threaded implementation. This
will be discussed further in Section 8.

With the concepts of texture mapping, mipmapping, and a tiled
texture pyramid in hand, the following rendering strategy for IC
layouts emerges:

1. Read in the entire layout database. This step is similar to
most IC layout tools.

2. Perform an LOD calculation to determine which pyramid
level is most appropriate to view given the current viewpoint.

3. Lazily create only the tiles of the tiled texture pyramid that
are visible on the screen.

4. Draw the layout.

5. As the viewpoint changes, go back to step 2.

Given this rendering strategy, the next sections explain how to cre-
ate and manage the tiles of the pyramid efficiently.

5. CREATING TEXTURE TILES
The creation of a texture tile involves computing the values of

the texels for that tile. Section 3 showed how the texel values could
be created by first rasterizing at the base level, and then down-
sampling. While this algorithm produces very accurate texel val-
ues, consider the computation and memory cost for using this ap-
proach to create a tile high up in the pyramid. In the pathologi-
cal case of the top-most tile, the memory cost would be equal to
the base area of the design, and the computation cost to filter that
potentially enormous area down to a single tile would be equally
prohibitive. The focus of the subsequent sections will be on how
the tiles high up in the pyramid can be computed directly from the
design data, obviating the need to rasterize at the base level and
down-sample.

5.1 Coverage
The simplest rasterization case is shown in Figure 2(a), repre-

senting two wires running horizontally, a wire running vertically,
and a via. The coordinates of the rectangles coincide with the texel
boundaries. This case corresponds to a texture tile at the base level
of the pyramid. Here, the grid resolution of the layout and the size
of the texels are equal such that all rectangles will fall on integer
boundaries. Rasterization is simple: either a rectangle covers a
texel completely or not at all. The final color of the texel is either
the background color, the color of a single layer, or the blended
color of two or more layers depending on the rendering style.

Now consider Figure 2(b). It shows an assortment of wires and
vias that fall arbitrarily on the texel grid. This case occurs whenever
the scaled coordinates3 of the rectangles have non-integer values.
This only occurs on pyramid levels other than the base level.

2The only substantive disadvantage is that the tile borders require
special attention, but this is more of an implementation issue than
a performance bottleneck.
3The scale factor is simply given by21/level where the lowest level
is considered level zero.

In situations like this, the rasterization process is not as simple.
The computation of the texel’s final color must take into account
the fact that the rectangle only partially covers it. To do this, the
amount ofcoverageof a given rectangle over a given texel is used.
The idea of coverage is the same as the well-known graphics idiom
alpha (α) which represents a color’s opacity. One can think of a
color that does not completely “fill” a texel as partially covering it
(coverage), or completely covering it at some opacity (alpha) less
than one, they are the same thing.

5.2 Coverage Maps
An important structure that uses coverage information is acov-

erage map. Figure 2(c) shows the coverage map derived from the
darkest horizontal wires shown in Figure 2(b). A coverage map
holds coverage information for one layer over the equivalent layout
area of the corresponding texture. There is a one to one correspon-
dence between a texel in a texture and a coverage map element.
The coverage map in this figure is encoded with gray scale values,
darker grays indicate more coverage, lighter indicate less.

The construction of a coverage map consists of rasterizing the
rectangles from a single layer and adding their coverage values to
the map. The assumption is made that rectangles from the same
layer do not overlap so the coverage values add, saturating to one.

5.3 Computing Texture Texels
The coverage map defined in the previous section does not con-

tain color information, nor can it be used to display information
directly on the screen. It can be used, however, to facilitate the
computation of the texels for a given texture tile. First, the target
texels are zeroed, and a scratch coverage map is allocated. Then,
for each layer to be composited, a coverage map is created, and the
information in the coverage map is used to blend that layer’s color
into the final texture.

The speed of tile creation depends on both the number of rect-
angles contained in a tile and the number of layers to composite.
If the number of rectangles to process is small, then the time to
create a tile will be dominated by the time to process the layers.
Otherwise, the time to rasterize the rectangles into the coverage
maps will dominate. Tiles high up in the pyramid tend to fall into
the latter case since they contain the most rectangles, while lower
pyramid tiles tend to have their computation time dominated by
layer processing.

6. MANAGING TEXTURE TILES

6.1 Using Spatial Locality
As a user changes viewpoints, texture tiles are created and ren-

dered on the display. If left unchecked, the number of texture tiles
created and, correspondingly, the amount of memory consumed
could grow to the full size of the pyramid. As was noted previ-
ously, the memory footprint of a full tiled texture pyramid for a
large size IC layout could be on the order of terabytes. Clearly, it
is not feasible to allocate new memory blindly every time a new
texture tile is created.

As a solution to this problem, a fixed size texture tile cache is
created. As texture tiles are computed, they are placed into the tex-
ture tile cache. When a tile is created and there is no room left in
the cache, a suitable tile is found to replace. Due to the spatial lo-
cality of viewing IC layouts, an LRU policy has good performance
for this cache.

The size of the cache should be set large enough to avoid capac-
ity conflicts as much as possible and small enough such that the
entire cache can fit into the main memory of the host platform. If

(a) Aligned rectangles. (b) Unaligned rectangles. (c) A coverage map.

Figure 2: Figure 2(a) shows the simplest rasterization case. Figure 2(b) shows a more complex case where the rectangles are unaligned
with the texel boundaries. Figure 2(c) shows the coverage map generated from the darkest rectangles of Figure 2(b). Darker areas
represent more coverage, while lighter areas represent less.

the cache is so large that the application memory footprint does not
fit into the host platform’s main memory, then performance is de-
graded. The time spent recomputing a texture tile is generally less
than the time needed to swap a computed texture tile from disk.

6.2 Precomputing the Top of the Pyramid
Showing a design at full screen view is a very common operation

in layout editors, and should always be fast. However, the very
top of the texture pyramid is the most time-consuming to compute.
Given this, the fact that the memory cost of these tiles is small, and
that it is beneficial to always have these tiles available for display,
it is advantageous to precompute a small number of tiles that make
up the upper levels of the pyramid.

First, a decision is made on how many of the upper levels to
precompute. A good heuristic is to choose the level that coincides
with a full screen view when the application window is the same
size as the screen. Depending on the screen resolution, this can be
anywhere from three to five levels. Next, memory separate from
the general texture tile cache is allocated specifically for the tiles in
this upper section, guaranteeing that they can never be evicted from
the general tile cache. Finally, layer coverage information is stored
in uncomposited form so the tiles can be recreated quickly during
a global appearance change.

A frequent operation used in layout editors involves hiding lay-
ers, changing the order in which layers are displayed, or displaying
layers with different colors or transparencies. Changes like this re-
quire all texture tiles to be recreated even though the design data
has not changed at all. To avoid this problem, coverage map in-
formation is kept for the lowest precomputed level, so that the tiles
can be recreated quickly if a global appearance change is made.

To create the precomputed portion, coverage maps are made as
they were defined in Section 5.2. Next, the bottom-most level is
created in the way described in Section 5.3. Lastly, the higher-
level pyramid tiles are created by using the standard box filtering
technique described in Section 3.

Now when a global change to the view occurs, the computation
required to recreate the top portion of the pyramid is limited only
to recompositing the coverage maps. This time is constant and not
dependent on the size of the design or the number of layout objects
contained within.

7. USING HIERARCHY
Another unique property of IC layouts is the explicit reuse of

sub-blocks in the form of instantiated hierarchy. The majority of

the time spent in creating a texture tile comes from visiting each
rectangle in that tile. This time can be reduced if the instantiated
sub-blocks are pre-rasterized such that iterating over their rectan-
gles is unnecessary.

A hierarchy cache is a block of preallocated memory that is used
to store pre-rasterized versions of heavily used sub-designs. Each
pre-rasterized sub-design will be a complete mipmap for that sub-
design. These mipmaps do not need to be tiled texture pyramids,
because their data will never be used directly by the graphics im-
plementation. It will merely be copied into the main design’s tiled
texture pyramid as needed.

How does one select which sub-designs out of the whole design
to pre-rasterize? The cells with the highest number of instantia-
tions are preferred since this maximizes the utility of the cache.
In the case that two sub-designs are instantiated the same number
of times, the larger sub-design is taken because it will cover more
area in the base layout. Once this ranking has been established, a
method is needed to select which of the sub-designs to pre-rasterize
since the hierarchy cache is of finite size. The steps are:

1. Compute the instance count for each sub-design and rank
them from highest to lowest.

2. Walk down this ranked list and mark sub-designs as being
pre-rasterized, subtracting the memory cost of pre-rasterizing
them from the available size of the hierarchy cache. Con-
tinue walking down the ranked list until the available hier-
archy cache memory is depleted. Note that sub-designs are
merely marked for pre-rasterization; no computation is actu-
ally done at this point.

3. Visit all the sub-designs that were marked as being pre-ras-
terized and determine whether all instances of its parent are
also going to be pre-rasterized. If so, there is no need to pre-
rasterize this design since its parent will be pre-rasterized.
In this case, mark the design as not being pre-rasterized and
return its memory allocation to the available hierarchy cache
pool.

4. Go back to step 2 and continue to select the highest ranked
sub-designs until the hierarchy cache is depleted again or ter-
minated when an iteration yields no change.

5. Finally, create mipmaps for all sub-designs that were marked
for pre-rasterization.

(a) The SUBlock Design. (b) SU Block Design’s Hierarchy Data.

Figure 3: Figure 3(a) shows the SUBlock design in its entirety. Figure 3(b) is also the SUBlock design but only the contents of the
hierarchy cache have been rendered. Approximately 52% of the total area is covered by data from the hierarchy cache.

This process pushes the selection of sub-designs as far up the hi-
erarchy as the size of the hierarchy cache will allow. The case is
allowed where the main design can fit into the hierarchy cache.
This occurs when the size of the design is small and simply means
that the entire layout will be pre-rasterized.

The format of the pre-rasterized hierarchy data is the same as the
coverage map information described in Section 5.2. The data needs
to be kept as coverage map information so that correct compositing
can be done when the texture tiles are created.

8. USING MULTI-THREADING
Regardless of how well the algorithms described in the previous

sections are implemented, there will still be a finite amount of time
to create the necessary texture tiles. This time delay can cause a
stutter in the responsiveness of an end application. To mitigate this
delay, a multi-threaded approach is taken. One thread renders the
texture tiles on the display while one or more threads are tasked
with creating the tiles. Since a tiled approach was chosen, and each
texture tile is completely independent of any other,N “creator”
threads can be used to achieve at mostN speedup, ifN processors
are available on the host platform.

In the case where the drawing thread does not have all of the
texture tiles available to it, it can look farther up in the pyramid for
another texture tile that covers the same area. A tile found higher
up in the pyramid will be a coarser view of the desired area, but
it is better to draw a fuzzier view of the layout than nothing at all.
Note that since the top part of the pyramid is pre-computed,some
coarser view of the entire layout will always be available for use.

The result of this multi-threaded approach is that, as the view-
point changes very quickly, the layout may become fuzzy because

the necessary texture tiles have not yet been created. As the view-
point remains constant, and the necessary tiles are created, the im-
age refines itself.

9. IMPLEMENTATION AND RESULTS
The system described was implemented by modifying the Magic

Layout System [5]. The OpenGL [3] graphics library was used to
render the designs. For the rest of the the paper, this implementa-
tion will be called “glLayoutView.”

Experiments were run to compare the performance of glLayout-
View, the Magic Layout System (version 6.5a), and two popular
commercial tools,A andB. Both commercial tools are from major
companies in the VLSI design industry. Tool A is primarily used as
a layout editor, while tool B is intended for viewing large designs.

The test platform was a Sun Microsystems Ultra 60 workstation
with two 450 MHz UltraSparcII processors, 2GBs of main mem-
ory, and an Expert3D [1] graphics card. The operating system was
Solaris 2.7, and the version of OpenGL was 1.2.1.

Two designs were compared: a design with substantial hierarchy,
SU Block, and a design with no hierarchy,Flash. Table 1 gives the
statistics for the two designs.

The Flash design is a flat layout containing the three metal and
two contact layers of theFlash MAGIC Chip[2]. SU Block is a col-
lection of custom designs containing fifteen assorted metal, active,
and contact layers with three times the number of total rectangles,
but only1/6 the number of unique rectangles as the Flash design.
The ratio of unique to total rectangles reflects how much hierarchy
exists in the design. The last column shows the dimensions of the
designs in grid units at the base level.

Total Unique
Rectangles Rectangles Design Size

Flash 4,893,834 4,893,834 156K× 156K
SU Block 14,855,372 833,820 50K× 54K

Table 1: Statistics for the two designs used in performance com-
parisons. If the designs were treated as regular images, as de-
scribed in Section 3, the size of the image files (assuming 24 bit
color), for only the base level, would be 73GB for Flash and
7.5GB for SU Block.

1 x 1
2 x 2
3 x 3
5 x 5

10 x 10
19 x 19
38 x 38
76 x 76

152 x 152
304 x 304
608 x 608

Flash

1 x 1
2 x 2
4 x 4
7 x 7

13 x 14
25 x 27
49 x 54

 98 x 107
196 x 213

SU_Block

− Precomputed Levels
0
1
2

4

9
10

3

5
6
7
8

Figure 4: Texture tile pyramid dimensions for Flash and
SU Block. Four levels of the pyramid were precomputed in
each design.

For all tests, glLayoutView was configured with256× 256 texel
tiles, a 64MB texture tile cache and a 64MB hierarchy cache. Fig-
ure 4 shows the tile pyramid dimensions for the two designs, with
precomputed levels shown in gray. Notice how the dimensions of
level zero, when multiplied by 256, are approximately the values in
the column labeled “Design Size” of Table 1.

Both of the commercial tools have the ability to draw a scaled
rectangle conditionally based on a user-defined threshold. This fea-
ture was turned off in both tools to make an equal comparison, since
glLayoutView draws all rectangles regardless of their scaled size.

9.1 Comparing Static Rendering Performance
The first performance test compares the tools rendering the entire

design once. For each design and tool, redraw time is recorded
for a window sized1280 × 1024 pixels. For glLayoutView, this
best corresponds to pyramid level five (49 tiles) in SUBlock, and
level seven (25 tiles) in the Flash design. The results are shown in
Table 2(a).

Because glLayoutView is multi-threaded, the actual redraw time
of the screen is fixed and dependent on the graphics capabilities
of the host platform. For an Expert3D graphics card, this time is
between 0.01 and 0.25 seconds depending on the number of tiles
to draw and whether or not they have been loaded into the graphics
accelerator. In order to provide an equal comparison, the numbers
quoted for glLayoutView are the times to create and initially draw
the texture tiles for the appropriate view.

Compare the redraw times in Table 2(a). In all cases except one
(Tool A drawing the Flash design), glLayoutView is twice as fast
or more. To help answer the question of why Tool A compares so
well, refer to Table 2(b) which breaks down glLayoutView’s ren-
dering performance into three parts: the time to walk the design
database, the time to compute the textures, and the time to drive
the graphics display with the texture data. The time to drive the
display is neglible because the Expert3D hardware very efficiently

Flash SUBlock
Magic 21.5 71
Tool B 18.5 76
Tool A 3.8 18
glLayoutView 9.6 6.3

(a) Redraw times for a full screen view.

Flash SUBlock
Database Access 5.5 3.1
Texture Computation 4.0 3.1
Graphics Library 0.07 0.14

(b) glLayoutView redraw times broken down.

Flash SUBlock
No Hierarchy Cache 9.6 34.0
Global Change Time 1.0 3.7
× 2 processors 5.1 3.1
× 4 processors 2.7 1.8

(c) glLayoutView under different rendering conditions.

Table 2: Static rendering performance. All times are in sec-
onds.

draws textures on the screen. This level of performance is comen-
surate with leading technology currently available to the average
VLSI layout designer. Perhaps suprisingly, the time to compute
the textures is comparable to the time of simply accessing all the
rectangles. So some of the performance difference between Tool A
and glLayoutView may be attributable to the level of optimization
in walking the database, but this cannot be verified both because
Tool A is proprietary, and also because no attempts were made to
enhance Magic’s data structures as part of this paper.

Another look at Table 2(a) shows that while glLayoutView is
slower than Tool A in drawing Flash, it is3× faster in drawing
SU Block. Table 2(c) reveals why. The first row shows the effects
of the hierarchy cache. The time for Flash is the same since it
contains no hierarchy, while the time for SUBlock is5.5× slower
versus when the cache is enabled. If Tool A’s time for SUBlock
is compared against the 34.0 seconds it takes glLayoutView with
the hierarchy cache turned off, Tool A again is faster by a factor of
two. It is clear that Tool A is highly optimized.

Referring back to Table 2(c), the second row shows the effects of
the optimization of precomputing the top of the pyramid that was
described in Section 6.2. In both designs, this recomputation time
is faster than the time to draw it from scratch. This time reflects
the delay in redrawing the entire screen if a global change were
made to the appearance of the design. The faster recomputation
time for Flash versus SUBlock is due to the smaller number of
layers present.

The last two lines show redraw times when parallelized across
two or four processors. In both designs, the speedup to two proces-
sors is nearly perfect, and the four processor speedup is a very ac-
ceptable 3.64. Only when comparing glLayoutView’s parallelized

4In the four processor case, glLayoutView was run on a 4×
400Mhz UltraSparc II processor system. The 3.6 speedup was

performance against the others does glLayoutView win on all ac-
counts.

One might ask if it is fair to compare the parallelized perfor-
mance of one application against the single-threaded performance
of another. In this case, it is fair because even if the other tools
were parallelized, their redraw times would not be faster. In fact,
they would most likely beslower. This is because standard graph-
ics displays do not allow for efficient drawing to a graphics device
by multiple threads at the same time. Any attempt to do this would
result in the drawing threads competing for control of the frame-
buffer, resulting in a serial execution. The overhead of the thread
switching would cause these implementations to be slower than the
single-threaded case. The other tools could certainly change their
architecture to allow for more efficient parallelization, but it is ar-
gued that any changes would require these tools to more closely
resemble the architecture presented here.

9.2 Comparing Dynamic Rendering Perfor-
mance

The previous section does not capture how the texture tiles can be
efficiently reused. Although the rendering times of glLayoutView
compare favorably with the other tools, the actual user experience
is even better because the tile creation time penalty is only paid
each time a tile is not present in the texture tile cache. The com-
putational cost of moving the viewpoint a small amount is nearly
zero, while the cost for the other tools is the same as drawing it
from the original viewpoint. Imagine drawing a full screen view
one hundred times. The cost for glLayoutView would simply be
the time to draw the screen once, while the cost for the other tools
would be the time to draw the screen multiplied by one hundred.

To quantify this behavior, each tool is made to go through a series
of viewpoint changes:

1. Full screen view

2. Zoom of2× on the upper left portion of the design

3. Zoom of2× on the upper right portion of the design

4. Zoom of2× on the lower right portion of the design

5. Zoom of2× on the lower left portion of the design

6. Full screen view

The effects of reusing textures can be measured if the number of
intermediate viewpoints to render between the six main viewpoints
is varied. Tables 3 shows the results. The first column shows the
combined amount of time to render the designs from the six main
viewpoints. The remaining columns show the time to render the de-
signs when a different number of intermediate viewpoints are also
rendered. As the number of intermediate viewpoints is increased,
the movement more closely resembles a smooth animated motion.
Now the effects of the texture tile cache are clearly demonstrated
because the render times for glLayoutView are constant.

9.3 Comparing Image Quality
Figures 5(a), 5(b), 5(c), and 5(d) show screenshots of glLayout-

View, Tool A, Tool B, and Magic rendering the Flash design. Each
of the tools, except glLayoutView, shows the effects of massive
aliasing. Tool A and Magic draw the layers in stacking order so
the highest layer is the only one visible. Tool B draws the small-
est rectangles last so the final appearance is speckled. Compare
these images to the view created by glLayoutView, where the gross
features are clearly visible and the wire densities are apparent.

computed by comparing the1× and4× tests on this system.

Flash
0(6) 1(12) 3(24) 6(48)

Magic 69 139 276 531
Tool B 57 87 151 265
Tool A 15 26 48 86
glLayoutView 8 8 8 8

SU Block
0(6) 1(12) 3(24) 6(48)

Magic 212 444 929 1816
Tool B 218 433 700 1293
Tool A 52 97 184 351
glLayoutView 9 9 9 9

Table 3: Total redraw times, in seconds, of the two designs
from different viewpoints. The column headings represent the
number of intermediate viewpoints that were visited. The total
number of rendered frames is shown in parentheses. glLay-
outView was run with all optimizations turned on, including a
multi-threaded factor of two.

10. CONCLUSIONS
The results are promising. By applying common techniques from

the graphics field to rendering VLSI layouts, a new level of visu-
alization was attained. The most unexpected result from this re-
search was the observation that the images created by glLayout-
View closely resembled a die photo or a high quality chip plot.
This type of detail can help IC layout designers a great deal.

Additional work needs to be done to make the techniques pre-
sented in the paper useful enough to replace existing systems, but
as VLSI layouts continue to grow in size, the need to visualize them
quickly and accurately will also grow.

11. ACKNOWLEDGEMENTS
The authors would like to thank Matthew Eldridge for his sug-

gestions and insight throughtout the course of this research. This
work was supported by DARPA contract MDA904-98-C-A933-
P00011 and a gift from IBM Corporation.

12. REFERENCES
[1] Expert3D Datasheet and Description

http://www.sun.com/desktop/products/Graphics/expert3d
[2] J. Kuskin et al., “The Stanford Flash Multiprocessor,” in

Proceedings of 21st International Symposium on Computer
Architecture, Chicago, IL, April 1994, pp. 302–313.

[3] OpenGL Specification
http://www.opengl.org

[4] J. Ousterhout “Corner Stitching: A Data-Structuring
Technique for VLSI Layout Tools,”IEEE Transactions on
CAD, Vol. 3, No. 1, 1984, pp. 87–100.

[5] J. Ousterhout et al., “Magic: A VLSI Layout System,”21st
Design Automation Conference, 1984, pp. 152–159.

[6] C. Tanner, C. Migdal, and M. Jones “The Clipmap: A Virtual
Mipmap,” SIGGRAPH, 1998, pp. 151–158.

[7] L. Williams, “Pyramidal Parametrics,”SIGGRAPH, 1983,
pp. 1–11.

(a) glLayoutView (b) Tool A

(c) Tool B (d) Magic

Figure 5: Screenshots of the Flash design. The design database for Flash used in this paper does not contain the data for the internal
memories. This is why the screenshots show empty space where the memories would be placed.

