
Magic Tcl Tutorial #4: Simulation with IRSIM

R. Timothy Edwards

Space Department

Johns Hopkins University

Applied Physics Laboratory

Laurel, MD 20723

This tutorial corresponds to Tcl-based Magic version 7.2

Tutorials to read first:

Magic Tutorial #1: Getting Started

Magic Tutorial #2: Basic Painting and Selection

Magic Tutorial #4: Cell Hierarchies

Magic Tutorial #8: Circuit Extraction

Magic Tutorial #11: Using IRSIM and RSIM with Magic

Commands introduced in this tutorial:

irsim , getnode, goto

graphnode, watchnode, unwatchnode

movenode, watchtime, unwatchtime, movetime

(plus the standard IRSIM command set)

Macros introduced in this tutorial:

(None)

1 IRSIM Version 9.6

In version 9.6, IRSIM has been redesigned to work under the Tcl interpreter, in the same manner

as Magic version 7.2 does. Like Magic version 7.2, section of Tcl as an interpreter is specified at

compile-time, along with various use options. The “make” method has been rewritten to match

the one which Magic uses, so IRSIM can be compiled and installed in a similar manner:

make config
make tcl
make install-tcl

–1–

March 22, 2003 Magic Tcl Tutorial #4: Simulation with IRSIM

Tcl-based IRSIM, like its non-interpreter version, can be run as a standalone product, and will

simulate a circuit from a .sim format file. However, it is specifically designed to be operated

in conjunction with magic, with methods for providing feedback directly into the layout from the

simulation, and vice versa. There are a number of cross-application commands, detailed below,

which belong to neither Magic or IRSIM, but are applicable when both are running in the Tcl

interpreter at the same time.

The cross-application commands highlight the usefulness of the method of compiling each

application as a loadable Tcl object module.

In addition to cross-application commands, Tcl-based IRSIM allows the use of interpreter vari-

ables, conditionals, and control structures to set up detailed simulation environments. A random

number generator has been added to the Tcl-based version, allowing generation of random bit

vectors for statistically-based coverage of input pattern spaces.

2 Invoking IRSIM from Magic

Within the Tcl/Tk environment, IRSIM is easier than ever to invoke. For tutorial purposes, we

will use the same cell used for the original Tutorial #11. Unlike the original version, Magic 7.2

requires no preparation for simulation and can operate directly off of the tutorial directory input.

Start magic with the command-line

magic -w -d OGL tut11a

Note that the OpenGL interface and Wrapper environment specified above are optional, and do

not affect the descriptions in this tutorial.

It is not necessary to extract! The scripts which invoke IRSIM are capable of looking for a

netlist file to simulate for the currently-loaded cell. Because these exist for the tutorial cells, they

will be used. IRSIM is therefore simply invoked by:

% irsim

You will see a slew of output that looks like the following:

Warning: irsim command ’time’ use fully-qualified name ’::irsim::time’
Warning: irsim command ’start’ use fully-qualified name ’::irsim::start’
Warning: irsim command ’help’ use fully-qualified name ’::irsim::help’
Warning: irsim command ’path’ use fully-qualified name ’::irsim::path’
Warning: irsim command ’clear’ use fully-qualified name ’::irsim::clear’
Warning: irsim command ’alias’ use fully-qualified name ’::irsim::alias’
Warning: irsim command ’set’ use fully-qualified name ’::irsim::set’
Warning: irsim command ’exit’ use fully-qualified name ’::irsim::exit’
Starting irsim under Tcl interpreter
IRSIM 9.6 compiled on Thu Mar 20 17:19:00 EST 2003
Warning: Aliasing nodes ’GND’ and ’Gnd’
/usr/local/lib/magic/tutorial/tut11a.sim: Ignoring lumped-resistance

(’R’ construct)

–2–

Magic Tcl Tutorial #4: Simulation with IRSIM March 22, 2003

Read /usr/local/lib/magic/tutorial/tut11a.sim lambda:1.00u format:MIT
68 nodes; transistors: n-channel=56 p-channel=52
parallel txtors:none
%

These comments require some explanation. The warning messages all have to do with the fact

that certain command names are used both by IRSIM and Magic, or by IRSIM and Tcl or one of

its loaded packages (such as Tk). There are several ways to work around the unfortunate conse-

quences of multiply defining command names, but the easiest is to make use of the Tcl concept

of namespaces. A complete description of Tcl namespaces is beyond the scope of this tutorial;

however, a simple description suffices. By prefixing a “scope” to the command, the command can

only be executed when the complete name (scope plus the double colon ‘::’ plus the command

name) is entered.

In general, the EDA tools make an attempt to allow commands to be entered without the scope

prefix at the command line. As long as command names are unique, this is done without comment.

However, when commands overlap, the easiest solution is to require the scope prefix. Therefore,

the command ‘set’ would refer to the Tcl set command (i.e., to set a variable), while ‘irsim::set’

would refer to the IRSIM command. Some attempt is made to overload commands which conflict

but which have unique syntax, so that it is possible to determine which use is intended when the

command is dispatched by the interpreter.

In addition to the warnings, there are a few standard warnings about global name aliases and

lumped resistance, and some information about the .sim file which was read.

3 IRSIM Command Set

In addition to the exceptions noted above for fully-qualified namespace commands, there are sev-

eral IRSIM commands which are not compatible with Tcl syntax, and these have been renamed.

The old and new commands are as follows (see the IRSIM documentation for the full set of com-

mands):

¿ savestate save network state

¡ restorestate restore network state

¡¡ restoreall restore network and input state

? querysource get info regarding source/drain connections

! querygate get info regarding gate connections

source (Tcl command) source a command file

Note that the ‘’ command is simply superceded by the Tcl ‘source’ command, which is more

general in that it allows a mixture of Tcl and IRSIM commands (and commands for any other

loaded package, such as Magic) to be combined in the command file.

Once loaded into Tcl alongside Magic via the irsim command, the IRSIM commands are

typed directly into the Magic command line, and will execute the appropriate IRSIM function. By

repeating the contents of Tutorial #11 in the Tcl environment, this method should become clear, as

will the benefits of using the interpreter environment for simulation.

To setup the simulation, the equivalent instruction to that of Tutorial #11 is the following:

–3–

March 22, 2003 Magic Tcl Tutorial #4: Simulation with IRSIM

% source $
�
CAD HOME�/lib/magic/tutorial/tut11a.cmd

Note that because the source command is a Tcl command, not a Magic or IRSIM command, it

it necessary to specify the complete path to the file, as Tcl does not understand the search path for

Magic cells, which includes the tutorial directory.

As most common commands are not among the set that cause conflicts with Magic and Tcl

commands, the tutorial command file loads and executes without comment.

Following the example of Tutorial #11, type c (IRSIM clock command) on the magic com-

mand line to clock the circuit. Values for the watched nodes, which were declared in the tutorial

command file, are displayed in the console window. Likewise,

h RESET B hold

will set the nodes RESET B and hold to value 1.

4 Feedback to Magic

The cross-application commands reveal the usefulness of having both applications as extensions

of the same Tcl interpreter.

While Magic and IRSIM are active and file tut11a is loaded, execute the following com-

mands from the command line:

stepsize 100
watchnode RESET B
watchnode hold

Note that the nodes and values are immediately printed in the magic window, making use of the

magic “element” command. These values are persisent in the sense that they will remain through

various transformations, openings, and closings of the layout window, but they are temporary in the

sense that they will not be saved along with the layout if the file is written (however, this behavior

can be modified).

The watchnode command requires no special action for placing the label elements in the lay-

out because magic uses the labels or other node information to pinpoint a position in the layout

belonging to that node, and places the label element there. It is possible to use watchnode with

vectors. However, as no location can be pinpointed for a vector, the magic cursor box position will

be used to place the label element.

Move the magic cursor box to a empty space in the layout window, and type

watchnode bits

Now move the cursor box to another empty space and type

watchtime

Now all of the simulation values of interest are displayed directly on the Magic layout.

The display of any node can be removed with the command unwatchnode, with the same

syntax as watchnode, and similarly, the display of simulation time can be removed with the

command unwatchtime.

–4–

Magic Tcl Tutorial #4: Simulation with IRSIM March 22, 2003

If the position of a label is not in a good position to read, or the relative position of two labels

places them on top of one another, making them difficult to read, the labels can be moved using

the movenode command. For instance, the node RESET B is not exactly on the polysilicon pad.

To center it exactly on the pad, select the square pad, so that the box cursor is on it, then do

movenode RESET B

The label will be moved so that it is centered on the center of the cursor box. The equivalent

method can be applied to the time value using the movetime command.

It is not necessary to know the name of a node in order to query or display its simulation value.

For instance, unexpand the layout of tut11a.mag, select an unlabeled node, and use a mixture

of IRSIM and magic commands to watch its value:

box 93 -104 94 -102
select area
watchnode [getnode]

In this example, both the node (bit 1/tut11d 0/a 39 n23#) and its value are displayed.

Likewise, the getnode command can be combined with other IRSIM commands to setup clocks

and vectors from unlabeled nodes. This can be particularly useful in situations where it may not

be obvious which nodes in a design need to be examined prior to running the simulation.

5 Analyzer Display

Tcl-based IRSIM has a graphical node display which is derived from functions available in the

“BLT” graphics package. These functions are not particularly well-suited for display of logic val-

ues, and so this will probably be replaced in the future with a more appropriate interface. However,

it accomplishes most of the functions of the former X11-based analyzer display.

In the Tcl-based IRSIM, no special command is needed to initialize the analyzer display. One

command sets up signals to be displayed in the analyzer window. This is:

graphnode name [row] [offset]

For display of multiple signals in the window, the optional arguments row and offset are provided.

Each signal which declares a new row (default zero) will appear in a separate graph in the display.

Signals which appear in the same graph, however, may declare a non-zero offset which will set

them at a different vertical placement on the graph, for cases in which this provides better viewing

than having the signals directly overlapping.

The analyzer display updates at the end of each simulation cycle. Logic values are displayed

as 0 or 1, with undefined (value ’X’) values displayed as 1/2. Note that the BLT-based inter-

face prohibits the display of multi-bit values, and only nodes, not vectors, can be passed to the

graphnode command.

6 Scripting IRSIM Command Sequences

A consequence of placing IRSIM in an interpreter environment is the ability to use interpreter

features such as variables, conditionals, and loops to set up complicated simulation environments.

–5–

March 22, 2003 Magic Tcl Tutorial #4: Simulation with IRSIM

7 Random Bit Vector Generation

The tutorial examples are small by design, but real systems (such as a microprocessor) are often

so complex that generating and simulating an exhaustive set of all possible states of the circuit is

impossible, and instead simulations rely on the generation of a set of randomly-generated inputs

to test a representative set of states.

Random number generation is not a built-in feature of the Tcl language, but several open-source

packages exist, one of which has been incorporated into the IRSIM 9.6 source. The pseudorandom

number generator is compiled as a separate Tcl package, but is loaded by the IRSIM startup script.

It contains one command, random, with the following arguments:

random option

where option may be one of:

-reset will cause the generator to be reseeded using current pid and current time.

-seed n will reseed the generator with the integer value n.

-integer ... will cause the number returned to be rounded down to the largest integer less

than or equal to the number which would otherwise be returned.

-normal m s will cause the number returned to be taken from a gaussian with mean m and

standard deviation s.

-exponential m will cause the number returned to be taken from an exponential distri-

bution with mean m.

-uniform low high will cause the number returned to be taken from uniform distribution

on [a,b).

-chi2 n will cause the number returned to be taken from the chi2 distribution with n degrees

of freedom.

-select n list will cause n elements to be selected at random from the list list with re-

placement.

-choose n list will cause n elements to be selected at random from the list list without

replacement.

-permutation n will return a permutation of � � � � � � � if n is a number and will return

a permutation of its elements if n is a list.

The following script clocks a random serial bit vector into a state machine, assuming that

bit in is the node to set, and that the proper clock vectors have already been set up:

for
�
set i 0� �

$i ¡ 100� �
incr i� �

if
�
[random] ¡ 0.5� �

l bit in

� else
�

–6–

Magic Tcl Tutorial #4: Simulation with IRSIM March 22, 2003

h bit in

�
c

�

–7–

