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Abstract

* Simulation plays an important role in design verification. With increasingly large VLSI designs,
the switch-lrével representation has become the only approach that is botﬁ, reasonably accurate
and computationally feasible. »
At present, switch-level simulators use relatively unsophisticated techniques to extract
information from the switch-level representation, and even these small amounts of information
are not always fully utilized. As a result, these simulators often lack accuracy. Most notably, the
way some switch-level simulators compute the final value can potentially generate undesirably
pessimistic results, and charge-sharing problems are widely ignored.

This thesis shows how to extract more information based on the same set of widely adopted
switch-level assumptions. Usin§ more sophisticated analyses, this thesis presents better final-
value and charge-sharing models. The new final-value model uses a systematic way to look at
the relationship between the voltage and the resistance. This approach can also” objectively
cooxgpare the accuracy of different DC-computation schemes. Charge-sharing problems are
modeled with two time constants. The two-time-constant approach is based on the observation
that most waveforms due to charge sharing are dominated gy a pair of time constants. Charge-
shan'ngkmodcls are first constructed on resistor networks, then they are extended to transistor
networks. .

These models have been incorporated into nRSIM --- a RSIM-based switch-level simulatgr. The
new simulator has the same running time as the original RSIM, but it can handle a larger class of
circuits. _

Key Words and Phrases: Charge-sharing models, delay estimation, final-value computation,
, switch-level stmulation.
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Chapter 1
| Intr(‘)du_ction

Designers of integrated circuits (IC’s) rely on simulators to do design verification,

which includes the checking of the functionality as well as the performance of their .

designs. - At present. metal-oxide-semiconductor (MOS) IC's with several hundred
thousand transistors are quite common, whereas, for these designs, a detailed anal-
vsis in a reasonable time frame is well beyond today's computing power. In the
early eighties. a new concept called switch-level simulation was developed to cut

down drastically the simulation time but still give reasonably accurate results.

The basic idea behind the switch-level representation is to substitute each tran-
sistor with a much simplified resistive-switch model. This abstraction filters out
~ all the nonessential details of a transistor but still catches its basic functionality.
This technique is particularly suitable for simulating digital designs because digital
designs are less sensitive to the exact characteristics of transistors. Switch-level
models are gaining popularity because of their flexibility — trade-offs between the
accuracy of the simulation result and the simulator's computational requirement

can be made by adjusting the details of the resistive-switch model.
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CHAPTER 1. INTRODUCTION

1.1 OrganizationA |

"The next chapter describes previous work in switch-level modeling. Two well-known

simulé.t.ors, MOS»SIM, and RSIM. are reviewed. Even though these simulators have
been widely used. there is still room fof iniprovement. Chapter 2 then identifies
problems in the logic and timing aspects of RSIM. Only delay estimation in the
timing aspect has been investigated by other reseaf¢hers, and their single-time-
constant and two-time-constant models are summarized. The rest of the thesis will

try to improve other shortcomings of switch-level simulation.

Chapter 3 discusses problems encountered in evaluating the final value of a

"network. In switch-level simulations, there are times when the state of the gate

>input of a transistor cannot be determined. When this ha.ppens. it 1s not clear

whether the source and drain terminals of the transistor are electrically connected.
Since the final value of a network can change with the electrical configuration of the
network, determining the connectivity is important. This chapter first survevs and
compares the techniques suggested by other researchers in a systematic way. which
involves the construction of the solution space formed by possible resistance-voltage
combinations at each node. It then proposes a new scheme and verifies that the

new scheme can do better than other schemes under many situations.

Chapter 4 looks at charge-sharing problems in resistor-capacitor networks. Charge
sharing is a timing-related problem caused by the redistribution of charge among
capacitors of a network. This problem can be classified into two categories depend-
ing on whether a network is driven. The existing timing models are inadequate for
charge-sharing problems because they do not take the charge-redistribution process
into considerations. This chapter suggests methods to approximate both kinds of
charge-sharing problems. Mathematical and intuitive arguments are provided to

substantiate the basis of the proposed methods.
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' Clllapt.‘er 5 applies insight gained from Chapter 4 to model chargé-sharing prob-
lems in transistor-capacitor networks. The major problem with modeling a transis-
tor network as a resistor network is that transistors are nonlinear devices. and it is
not clear how the nonlinearity of transistors can affect the accura»x.cy of the result.
By looking at MOS transistors as pseudo-linear devices, it is actually possible to
directly apply the lineaf formulations to transistor networks. This chapter explores
the differences such as the shapes of waveforms and the determination of time con-
stants in charge-sharing models of resistor and transistor networks. A part of this
ché.pter and most of Chapter 4 have been published in [6.7].

Chapter 6 examines the implementation issues of the models presented in Chap-
ters 3. 4 and 3. It is shown that RSIM's existing élgorithm can effectively irnplemenf
~ all these models in complexity that is linear with respect to the number of tran-
sistors in an electrically connected cluster. It also shows that the previous timing
models can be generalized straightforwardly from the single-driver assumption to
multiple drivers without complicating the evaluation algorithm.

Finally, Chapter 7 summarizes the contributions of this thesis and describes

areas for further investigations.
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Chapter 2

Previous Work in Switch-Level

'Simulation

2.1 Overview

The switch-level representation of a transistor circuit is an abstract model that
lies between the logic-level and circuit-level representations. This representation is-
particularly suitable for simul‘a.ting digital VLSI designs because it makes a good
compromise between the speed of simulation and the accuracy of its result. Gener-
ally speaking. switch-level simulators run about two to three ordérs of magnitude
faster than circuit-level simulators such as ASTAP[27] and SPICE[17]. while provid-
ihg most of the information needed to analyze digital designs. Although. by solving
complicated differential equations, circuit-level simulators are capable of genérating
detailed analog waveforms, this information is often irrelevant for analyzing pure
digital circuits. In contrast, a fast simulator is invaluable for large designs.
Problems with most logic-level simulators[9.25] are not their speed; their short-
comings are in the evaluation of logic and the estimation of delay. For MOS

technologies, logic-level simulators” ability to handle pass transistors (transmission

-

9




6 ' CHAPTER 2. PREVIOUS WORK IN SWITCH-LEVEL SIMULATION

gates) 1is lir_nite’d by their Boolean-gate model. which does not manipulate bidirec-
tionai signals well. In addition. logic-level simulators which use designer-supplied
minimum, nominal. and maximum gate dela};s to estimate circuit speed are often
awkward at modeling MOS circuits where the loading depends on the logic value.
These short.conﬁngs negate the speed advantage of logic-level simulators.

This chapter summarizes prior works in switch-level simulation. In Sectioﬁ_?.?.
tlﬁé fundamentals of two widely used switch-level simulators are presented. These
- simulators substitute transistors and capacitors with abstract elements. In doing
so. they try to maintain the essential features of the original circuit while simplhfy
those which are irrelevant to the analysis of digital VLSI designs. However, it is not
completely effortless to analyze circuits that are in the switch-level representations.
These difficulties are explained in Section 2.3. Only one of the difficulties, namely
delay estimation. has beeh extensively investigated by other researchers. Their re-

sults are reviewed in Section 2.4. The follovvin_g chapters will then describe methods

of improving the remaining problems.

2.2 Switch-Level Models

In switch-level models. a node is characterized by its capacitance, which is deter-
mined by the node’s physical layout. This capacitor has to be charged or discharged
in order to change the node’s state. Since a capacitor does not charge or discharge
instantaneously, there is a delay associated with each state change. This delay is di-
rectly i)roportional to the capacitance of the capacitor, and is inversely proportional
to the current driving the node.

To model the sources of current. each transistor is represented by a resistive
switch which links the transistor’s source and drain terminals. The switch is further

modeled by a perfect switch in series with a resistive device. The state of the switch
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is determined by the transistor’s gate input. For nMOS devices, the switch conducts
if the gate is high: for pMOS devices, the switch conducts if the gate is low. If the

value of a transistor’'s gate input cannot be determined by its simulator. then the

state of the corresponding switch cannot be specified either.

The resistivebomponent reflects the current-conducting ability of the transistor.
There are many ways to calibrate the conductivity. The tv.wo most well-known
switch-level schemes were proposed by Bryant[4.5] and Terman|26]. Brvant's scheme
1s more abstract in that only a small set of discrete values are used to do the
calibration. In contrast. Terman uses a continuous spectrum of effective resistances.

which is more realistic in measuring the conductivity of a transistor.

2.2.1 Bryant’s Scheme (MOSSIM)

Bryant’s scheme. which is adopted by switch-level simulators such as MOSSIM[3].

. MOSSIM II[3]. and COSMOS]2]. does not calculate the exact conductivities of

transistors: it only keeps track of the relative conductivities. The notion of relative
conductivity is essential in modeling ratioed logic, which requires one conducting
transistor to overpower another conducting transistor. The scheme labels relative
conductivity with discrete strengths 57, ;.. ... ~“max- Lhe required difference in con-
ductivity to put transistors into different strength classes is set by the user, and
is normally set such that ratioed logic can operate properly. Consequently, this
scheme is also known as the “order-of-magnitude” scheme. The number of different
strengths required for- simulation is usually small. For example, most CMOS de-
signs do not involve ratioing, hence, they can be modeled with one strength; while
most Mead-and-Conway[16] stvle nMOS' designs only need two strengths: one for
depletion load transistors and one for all other transistors. Since conductivities of

devices with different strengths differ significantly’, a weaker device can be ignored

ITvpically a factor of four for Mead-and-Conway style nMOS designs.
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when conneéting in parallel with a stronger.device., but forms a bottleneck if the
connection is in series. In other words. no matter whether two devices are ccrihected'
in’ paralle] or m series. 'they. can always be replaced by one device. For parallel de-
vices. the strength of the new de\'icé is set by that of the stronger one of the 'ofiginal
devices. while for series devices. it is set by that of the weaker one of thé original
devices. | | |

Not 6111}' are t.rallsiétors" cdnductivities measured in a relative sense. but sizes
of capacitors are aiso relétive. A small number of si’rengths K1-Koeuwnn Kmax are
assigned to capacitors. The criterion in assigning these strengths is such that when
two capacitors with diﬁefent. strengths are connected together. the capacitor with
the weaker strength can be charged to the voltage level of the other capacitor. For
example. a precharged node is often assigned a stronger strength than an ordinary

node because a precharged circuit works through capacitance ratioing.

A third kind of strength is assigned to input nodes. These nodes are labeled
with strength « regardless of their logical states. Strengths of transistors, capacitors,
and inputs can be compared to one another. An iﬁput has the strongest strength
because it can directly change the state of a node. A node which has an electrically
connected path to an input node is said to be driven. and the path is called a driving
path. When passing through a transistor. the Strength of an input is attenuated by
the transistor. Hence, the sfcrength on the other side of the transistor is set by the
strength of the transistor. ‘When twc or more driving paths merge at a node. the
path with the strongest strength suppresses all other paths weaker than it. Driven
values always overpower capacitors because capacitors can always be driven to the
state of the driving source. This reasoning implies that capacitors are “weaker” than
any driving path, and thus have weaker strengths than transistors. In a nondriven
network, a signal originating from a capacitor retains its strength when passing

through a transistor. Such a path is called a charging path. A weaker charging path
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- can be ignored when a stronger one is present at the same node. The ordering of

the three kinds of strengths is
K1 <A< ...<HKAnax <711 <72 < ... < Ymax < &

This ordering is handy in filtering out weak pé-.ths with neghgible effects. By
blocking out weak paths. the problem of determining the state of a node is simplified:
the state depends on unblocked paths in}'. If all the unblocked paths have the same

V logical state. then the node has that state as well. In contrast. if the unblocked paths

have different logical states. then the state of the node is undefined because it is .

unclear which of the paths is the dominant one.

2.2.2 Terman’s Scheme (RSIM)

The other widely used switch-level model was developed by Terman for RSIM[26].
This scheme models a transistor as a linear resistor. Termanvassigns two sets of
equivalent resistances to each transistor in its conducting state: one set for dvnamic
_purpose and the other for static purpose. Thus, this scheme is also known as the
“effective-resistance” scheme. Both sets of equivalent resistances are. among other
factofs. functions of a device’s dimensions and material.

The dynamic equivalent resistance is used for delay estimation. Its value depends
on the circuit context of the transistor. For example, it is much easier to discharge
than to charge a capacitor through an nMOS transistor due to the device's nonlinear
current-to-voltage characteristic. RSIM, with help from a circuit simulator, assigns
dynamic equivalent resistance to take nonlinearity into account. In order to find the
equivalent resistance of an nMOS transistor charging a capacitor, Terman assumes a
step function for the transistor’'s gate input, and finds the duration required for the
capacitor to reach certain switching voltage. This duration is defined as the rising

time constant. The ratio between the rising time constant and the capacitance is
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defined to be the dynamic equivalent resistance of the transistor. A complete set of
dynamic equn’alenr resistances can be gathered by doing experiments on all p0551b1e

combinations of sample c1rcu1t configurations.

, In addition to a set of dynamic equivalent resistances, Terman uses. probably
incorrectly.? a different set of equivale’nﬁ resistances, némely the static equivalent
resistances. to find the DC voltage of each node in a transistor network. For a
- CMOS circuit which does not depend on device ratioing for its correct operation.

static equivalent resistances can have any value. For an nMOS gate in which a
voltage divider is formed between a depletion load and one or several enhancement
‘pull-down paths. there is still considerable freedom in assigning static equivalent

resistances to ensure correct simulation.

Since a fransist.or network in Terman's scheme ié modeled As a resistor-capacitor
network (or an RC network). linear circuit theories can be used to simphify the net-
work. For example, two transistors in series are modeled as one linear resistor -
having the sum of their equivalent resistances; similarly, the resistance of two par-
allel trahsist-ors is the parallel combination of their equivalent resistances. The DC
voltage of a node in an RC circuit can be determined by analyzing its resistors
alone. RSIM also provides a delay estimation. which is approximated by the prod-
uct of the lumped sum of resistances and the lumped sum of capacitances. This
approach is illustrated by an example in Figure 2.1, where the delay at node n is

estimated to be

T—(ZR}c ZC}c | (2.1)
k=1

2Since the same factors that affect a transistor’s ability to drive a capacitor also affect the DC
value, one can use a single effective resistance for both the dynamic and static analyses. This not
only simplifies the analyses, but also give better results.
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n

_I_

Ry R,
' C,

1 2 R,
'V\M CW\A, _]_ .,. .," WW,

Figure 2.1: A distributed RC line.

2.2.3 Comparisons between MOSSIM and RSIM

MOSSIM and RSIM put emphases on different issues. By assigning discrete strengths
to transistors and capaci‘t.ors, MOSSIM does not have to deal with detailed current-

- voltage relationships. In contrast. RSIM uses resistors and capacitors to form a more

accurate. but also more complex. model of a circuit. Although MOSSIM makes ma-

jor approximations up front. its higher level abstraction allows it to achieve gener-

ality through simplicity. MOSSIM's path blocking and state evaluating algorithms

are cheap to implement and can accurately model the abstracted circuit. On the

other hand. RSIM has to deal with a more complex model and must often make

approximations at the evaluation stage.

In order to limit its complexity. RSIM only handles tree-like networks. A network
1s tree-like if it does not contain any closed path (loop) formed by transistors (or
resistors). Loops are rare in digital designs, and they are expensive to analyze
because a simple parallel-and-series collapsing of resistors can no longer be used. To
solve a general resistor network with loops requires finding the inverse of a matrix,
which is prohibitively expensive for an effective-resistance based simulator. On the
other hand. MOSSIM solves feedbacks by an iterative algorithm which terminates
when nodes in a loop stabilized. This process is relatively inexpensive for MOSSIM

because only a small set of discrete strengths are involved.

One major drawback of MOSSIM's elegant high-level representation is its lack
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~of timing information. ’The,ﬁotion of relative strength is insufficient to specify the
exact delay. hence. unit delay is assumed. Sinée speed is the principal advantage of a
fully customized IC. timing information is crucial for most designers. RSIM. on the
other hand. carries enough information to be as accurate as the resistor-capacitor
nlociehng can be. As a matter of fact. the RC-modeling é.pproa.ch has even been
used by t.iniing \'eriﬁérs[14,18.21] Whose. main purpbses are to estimate delays and
find critical paths |
Lnfortunatel'\ in their or;ffmal 1mplementat10ns neither MOSSIM nor RSIM is
satlsfactor\ 1n simulating nontrivial circuit structures such as complicated gates
pass-transistor networks, and charge-shamng designs. Although MOSSIM is intrin-
sically limited by the available information in its abstracted model. RSIM is only
limited by its inability in extracting information from RC networks. Since this
thesis aims at improvihg the accuracy of simulation. and the effective-resistance
representation has a greater potential for accomplishing this objective, RSIM is

chosen to be the groundwork.

2.3 Analysis of RSIM

The major challenge for an effective-resistance based simulator is how to inexpen-
sively, but accurately, extract logic and delay information from RC networks. In
order to determine the logical state of a node. the node's DC voltage has to be
computed. In order to find the exact delay of a node, the node's waveform has to
be derived from a set of differential equations.

The computational complexity of a simulator is further increased by the presence
of the unknown logical state. X. A transistor with an X on its gate is called an X
transistor, which can be either conducting or nonconducting. Thus, the number

of possible electrical configurations that can be derived from a network increases
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exponentially with the numbe'r of X transistors in the network. Different circuit
conﬁguranons can drive the same node to different final voltages with different

delays. and only an exhaustive evaluation can uncover all possible outcomes.

An exhaustive algorithm which requirés solving differential equations at each
step 1s extremely expensive. At the expense of sacrificing some accuracy, RSIM
ﬁses two schemes to drastically reduce the computational complexity. One scheme
is based on an intelligent way of ha,ndlling X transistors such that not all circuit
configurations are evaluated. The other is to use the easy-to-compute empirical

model described in Equation 2.1 to approximate the delay time constant.

RSIM manages to avoid exhaustively evaluati_hg X transistors by making con-
servative approximations on possible outcomes. An approximation is conservative
if it is no more optimistic than the worst case scenario created by setting X transis-
tors to all possible conducting and nonconducting combinations. The definition of
a “worst case scenario’f depends on the sub Ject being examined. Since DC voltage
1s used to det-ermine the logical state of a node.b the worst case scenario is that
the node reaches voltage levels which represent different logical states by setting X

transistors to different combinations. If a node can have more than one possible

state. then the node is considered as logically invalid.

Determining the achievable voltages is a difficult problem. as the example in

Figure 2.2 illustrates. The circled part of the figure is a resistor divider in series with

a switch in an unknown state. The switch conceptually represents an X transistor.
In order to find the maximum achievable voltage at node a, the switch should
be considered as OFF. However, if node a is later on merged with a strong pull-
down such as node b. then in order to find the maximum achievable voltage at the
combined node. the switch should have been considered as ON! In other words. the
decision of whether a bridging X transistor should be considered as conducting or

nonconducting depends on what it is going to combine with and the information
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Oa Q

Figure 2.2: Potential complications that can be caused by a switch in an unknown
state. :

that 1s Being looked for.

RSIM's X-transistor scheme can intelligently handle some X-transistor config-
urations. but it also generates pessimistic results on some other conﬁgura.tions. A
detailed description and analysis of RSIM's scheme can be found in Section 3.3.

In terms of delay modéling. RSIM has been quite accurate for simple transistor
clusters. A transistor cluster is a group of nodes that are electrically connected. and
it is the smallest unit that RSIM operates on. Generally speaking, the complexities
of transistor clusters do not vary with the complexities of designs, and in order to
minimize delays. complicated transistor clusters such as pass-transistor ne’cWorks
are often avoided if possible. Thus, most transistor clusters are of the type in
which a logic gate drives an output capacitor, and the lumped model described in
Equation 2.1 is adequate for these clusters.

However. there are two classes of circuits which the lumped model does not han-

dle well. The first one is distributed RC structures, which include the models of long
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Figure 2.3: Waveforms at node n in F igure 2.1 with different sets of R's and C’s.

polysilicon or diffusion lines and pass-transistor networks (which are unavoidable in
some designs). With reference to the example shown in Figure 2.1. even without a
rigorous definition of delay. the lumped model seems doubtful. The fallacy of the

model is that not all capacitors discharge or charge through all resistors. Therefore.

a voltage waveform can change significantly just by rearranging the R’s and C’s in
a network while keeping 3, Ry and Y, Ci in constants. An example is shown in I

Figure 2.3.

In addition. the lumped model assumes that transistor clusters are always driven
by one and only one voltage source, which, unfortunately. is not true. For example,
some circuit structures. such as NAND and NOR gates. can have multiple voltage

supplies. and the lumped model cannot effectively handle these structures.

The other class of circuits which the lumped model does not handle are those |

with timing problems caused by the redistribution of charge among capacitors (i.e.

charge-sharing problems). Charge sharing is the focus of Chapters 4 and 5. and it

will be discussed more extensively there.
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Among all the shortcomings that can be potentially improved, only delay mod-
eling has been extensively investigated by other researchers. In the early eighties,
a number of researchers came up with more sophisticated timing models for RC

networks. Their results are reviewed in the following section.

2.4 Enhancements in Timing Models

Research in timing has been concentrated on RC trees driven by a single voltage

‘source with all capacitors starting at the same voltage. An early analytical result

- by Elmorel[8] is adopted as the definition of delay. Elmore defines the delay of a

node to be the first moment of its impulse response. This value is also equal to
the centroid of the impulse response in the time domain. which matches the fuzzy
notion of what a “delay™ should be. | |

'_The. definition of delay was then extended to a.pproximaté waveforms. This led
to the single-time-constant mddel[12.15.19.24]. This model provides an estimate of a
waveform. hence, the approxifnate time required for a node to reach any voltage level
can be determined. Bounds of an estimate were also developed to check the accuracy
of the approxifhation. Although waveform bounding istheoretically interesting[28].
it is difficult to use in simulators.

When both the single-time-constant model and its bounds match poorly with
the real waveform at a node, there is a good chance that the node does not have
a dominant time constant. . This observation prompted some researchers to ex-

periment on other more complicated timing models. Among them, there is the

“two-time-constant model[12]. which is most helpful in improving the estimates of

a small class of unusual waveforms. However. its technique has profound influ-
ences in works presented in a later chapter. Both the single-time-constant and the

two-time-constant models are summarized here.
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2.4.1 Single-Time-Constant Model

The idea behind the single-time-constant model is quite simple. An RC tree is a

linear system. and its solution is the sum of exponential functions. For circuits

-appearing in digital VLSI designs. an output waveform is often dominated by the
~slowest exponential, which is caused by the lowest-frequency pole. Thus. a single
.exponential function is a good model for an output waveform. The area under an

exponential is equal to its time constant. and it also turns out that for a node in

an RC tree. the area under its voltage waveform in the time domain is quite easy

to find from the circuit’s network topology. Hence. this area. which has the same

value as the Elmore’s delay. is used as the approximate time constant.

Assume that the root of an RC tree is the ground. and that all the capacitors
in the tree are charged high initially. The voltage® drop 1 between any node ¢ and
the gr‘ound can be formulated by collecting the current from each capacitor and

adding them together as fdlows: _
. o dv;
V.= Riir= “ZchCk"g‘}:
4 - t

where 7; is the current from the capacitor Cy at node k, and R, 1s the resistance
of the path to the ground shared by both node k and node e. The area of 1 in the

time domain is given by
&> "; d def —
0 e dt = ZRkeck = 7D,
k

Figure 2.4 shows a simple RC tree where nodes a, b, and c are charged high initially.
The exact waveform at node b is plotted against the single-time-constant model in
Figure 2.5.

Unfortunately. not all waveforms can be modeled successfully with a single time

constant. The example in Figure 2.6 is derived from the one in Figure 2.4 by

3All voltages are normalized to range between 0 and 1 unless specified otherwise.

Gestriin
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Figure 2.4: A simple RC tree.
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Figure 2.5: Voltage waveform of node b in Figure 2.4.
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Figure 2.6: Node b in this network has a low-frequency pole-zero pair.

increasing the capacitance at node ¢ and the reSi_stance between node ¢ and node
c¢. The voltage at node b initially falls at its own rate; however. the rate of decay is
éven’cualb’ controlled by the dominant time constant set by the capacitor at node
¢. In frequency domain. this circuit has a low-frequency pole-zero pair, and the
low-frequency zero partially cancels the dominant pole. This causes the output to
 have a two-time-constant behavior. As shown in Figure 2.7. although the areas
: bélow the single-time-constant model and exact waveform are still the same, the

approximation is not good for most regions.

'2.4.2 Two-Time-Constant Model

Horowitz[12] proposed a model with a slow and a fast cdmponent. for this class of
networks. His model approximates a node’s network transfer function.* H(s). which
is defined as Laplace transform of the derivative of the node’s voltage waveform (its

step response) by

: k(1 + s7.) ) ,
H{s)~ - = k(1 . — Tp)& + T — T - )& .
(s) P g (1+(r.—7p)s+7p(Tp — 7o — Tape)s” +--2)

2
o

4The only difference between a network transfer function and a network function is that the
former can have arbitrary initial state while the latter is a zero-state response.
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Figure 2.7: Voltage waveform of node b in Figure 2.6.

where 7p = 71 + 75 and 7. = 137y /7p. The magmtude of k is equal to the product

of all zeros in H( ) divided by the product of all poles in H(} ).. The model also

approximates 7p by the sum of all 7's in the original system, which is equal to

>k RixCi. The network transfer function which the model tries to approximate can

be derived from its circuit description by finding the moments of the real waveform

as follows:
H{s) =

'/ F hemt dt

0

/ huﬁ—s/-tMcﬁ+——/ th.dt+---
0 : 0 2 Jo

/ dv, +
/ dv.

s/%u&—ﬁftu&+u-

(RkeCk / AL dt) +e ¥ (Rkec,, Ih tﬂi dt)

—1+4+s1p, — s ZRkCCkTDk s (2.3)
k

where h, is equal to the derivative of 1.

The idea behind modeling a network transfer function by a two-pole-one-zero

system is to match the boundary conditions at time zero and infinity as well as the
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area and the first moment of the estimate with that of the real voltage waveform.
Similar to that of a Taylor's series expansion. the accuracy of an estimated Wa\;.eform
improves with the orders of matching moments. but the »ar»nount- of computation
also increases accordingly. By matching the coefficients of the first three terms in
Equations 2.2 and 2.3. the time constants 7; and 7, can be uniquely determined.
In Figufe 2.7, the output of this two-time-constant model is compared with other
models.

Since fan-outs in VLSI designs usually have roughly the samé timing. circuits
with low-frequency pole-zero pairs are rather rare. As a result. this model has not |
“been widely used. Nevertheless. the technique of modeling by matching the terms
of an expanded network transfer function can be applied to other unexplored timing

and glitch-detection areas.

2.5 Summary

Switch-level simulators balance the accuracy of circuit-level simulators with the
speed of logic-level simulators. They are accurate enough to simulate pure digital
designs but fast enough for large networks. The order-of-magnitude scheme and
the effective-resistance scheme are the two most widely used switch-level modeling
techniques. The former scheme transforms transistors and capacitors to devices with
discrete strengths. In contrast, the latter scheme transforms a transistor network
to an RC network. Between these two schemes, the effective-resistance scheme is
more suitable for timing and other detailed analysis.

The switch-level simulator RSIM follows the effective-resistance approach. but
has many shortcomings. These shortcomings are caused by difficulties in extracting
information from an RC network. Although delay modeling has been investigated

by many researchers. there are still timing issues which need attentions. Most
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nbtabl}'. the exis‘g_i_ﬁg timing models assume that bcircuit.s, are driven by a single
vdtage source: hen;_ce,v they can neither mode] circuits without a dn’ver nor model
circuits with 1vnul.ti1').lve‘dn’\-'ers. |

N ‘tvranvsist’ors also cause problems to switch-level simulators becax@e of the uncer-
tainties of t.hgir_ states. RSIM tends to handle X trahs’istors too co11éervatively, and

produces pessimistic results. These issues are explored in the following chapters.




Chapter 3

Final-Value Computation

3.1 Overview

RSIM models a djgital circult as having three logical states — 1 (high). 0 (low),
and X (invalid). It determines a node’s logical state by first estimating its voltage
and then comparing the voltage with two thresholds: if the voltage is higher than
the high threshold. then it is considered as logical high: if the voltage is lower than
the low threshold. then it is considered as logical low; if the voltage is in between
the two thresholds. then it is considered as invalid. Theoretically. there can be
a fourth state for simulators. which is usually referred to as “valid-but-unknown”
state. For example, although the two outputs of an VR~S latch must have opposite
polarities, their states cannot be determined during initialization. In this chapter,
a valid—but-unkno#n state 1s treated the same as an invalid state.

The two principal considerations in computing DC voltages at the switch level
are accuracy and complexity. In terms of accuracy, design flaws such as drive
fight and ratio error which result in invalidated outputs must be caught. Although
simulators should err on the conservative side such that real design errors do not slip

through, indiscriminately pessimistic results tend to discourage a designer because
[}

23
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invalid states spread quickly in simulators. The spreading of invalid states has been

- examined by Breuer[1]. The fundamental problem is that ternary logic does not

- obey the Law of Excluded Middle (Q +Q = 1) as digital circuits do. consequently.

cross-coupled structures which rely on this property to settle \'alid-but-m1k110{\f11
states cannot be handled correctly. The dilemma is how to catch real design flaws
without invalidating nodes which are otherwise valid. In terms of complexity. the
method chosen should be computationally inexpensive such that simulatioﬁ at the

VLSI level can be done interactively if so desired.

While Kirchhoff's current law and voltage law provide a systematic way in an-

alyzing any lumped electric circuit. their application to circuits in the switch-level

- representation is complicated by X transistors. Although all achievable voltages at

a node can be found by evaluating X transistors exhaustively (by setting them to

combinations of conducting and nonconducting states), it is both expensive and un-

‘necessary to do so. For digital circuits. the logical state of a node is only determined

by its minimum and maximum achievable voltages: hence, instead of solving for all

achievable voltages. a simulator only has to find the achievable voltage range.

Yet, determining the achievable voltage range is still a nontrivial task. as the
example in Figure 2.2 has already shown. In addition, although voltage range
alone dictates the logical state of a node, combining two or more nodes réquires
the nodes’ resistance informqtion‘ Since the effective resistance associated with a
node depends on how X transistors are set. it can also have multiple values. These
values can be bounded by a resistance range. '\"'61tage range and resistance range are
closely related. and their relationship is best visualized in a two-dimensional Veg-Rey
(voltage-resistance) plane. This technique is first documented by Terman[26]. and

it i1s reviewed in the next section.
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3.2 Solution Space Representation

'Thévenin's theorem states that any two-terminal network of resistors and voltage

sources can be represented by an equivalent voltage source (17,) in series with an

equivalent resistor (R.,): As mentioned in the previous section. if some of the

resistors in the network do not have fixed values, then the output of the network

can be represented by a collection of Thévenin equivalents. The collection can be

represeﬁted in a plot with its X axis being 17, and its 1" axis being R,,.

- A simple resistor divider shown in Figure 3.1 (a) illustrates the construction of
such a plot. To start with. assume that R;;, = R, = Ry and that Rp, = Rp, = Rp.
In this case. the effective output resistance and the effective output voltage are
equal to Ry || Rp and Rp/(Ry + Rp) respectively. This Thévenin equivalent can
be specified in the 1,;- R, plane by a point. The relationship between the effective

output resistance and the effective output voltage. as a function of R;- and Rp. is:
Re(Ri:. Rp) = RuVeo(Re. Rp) = Rp(1 — Viy(Ru. Rp)).

In the resistor divider. if the pull-down resistor varies between 0 and ¢ (that.

is Rp, = 0 and Rp, = oc) while holding the pull-up resistor in constant at Ri-.

then all possible 1,,-R,, pairs (Thévenin equivalents) form a segment of the line
Reg(Rp.r) = Ryl (Rp.r) where 0 < r < oc. This segment resides in the first
quadrant of the 1,,-R., plane. has slope Ry, and terminates at (0.0) and (1, Ry ).
In contrast. if the pull-up resistor has the range [0. oo] while the pull-down resistor
1s held at constant R p- then all V;-R,, pairs form the first-quadrant segment of the
line Reo(r. Rp) = Rp(1 — Voo(r. Rp)) terminating at (0, Rp) and (1,0).

If neither the pull-up nor the pull-down resistor is at constant. then the plot of
all V¢;-R,, pairs forms a diamond-shaped quadrilateral: see Figure 3.1 (a) and (b).
A systematic way to construct this solution space is to vary the pull-up resistance

between 0 and oc with the pull-down resistance equal to Rp,. and then to repeat the
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Figure 3.1: A resistor divider and its output solution space.

operation with the pull-down resistance equal to Rp,. Thévenin equivalents formed
by the operations can be described by two straight lines in the Vo,-R., ‘plane. The
region in the first quadrant between these two lines represents all possible output
V- Req combinations for the resistor divider with its pull-down resistance between
[Rp,-Rp,] and any positive pull-up resistance. By reversing the roles of R and
Rp in the above process. one can calculate all 1,-R,, combinations for the resistor
divider with its pull-up resistance between [Ry,. Ry,] and any positive pull-down
resistance. These combinations form another triangular region in the first quadrant

of the Vep-Re; plane. The solution space is the intersection of these two regions.

Although a diamond-shaped quadrilateral cah be expressed quite easily with
four parameters. the solution space of a more complicated circuit can be highly
irregular. With reference to thé circuit shown in Figure 3.2 (a), since the series
resistor only affects the output impedance, the circuit’s output voltage range is the

same as that of Figure 3.1 (a). Its solution space can be visualized by shifting
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Figure 3.2: A resistor divider in series with a resistor and its output solution space.

the shaded area in Figure 3.1 (b) R; units along the R, axis and stretching the

~ upper boundary by another R, — R; units. The result is graphically illustrated in

Figure 3.2 (b).

Several seemingly reasonable final-value computation schemes are actually heuris-

" tics to handle complicated solution spaces. However. only a systematic analysis can

explore the limitations and shortcomings of these heuristics. The following sections

examine two methods of approximating complicated solution spaces.

3.3 Box Method (RSIM)

The implementation which comes with the original distribution of RSIM approxi-
mates the solution space of a circuit by a rectangular-shaped area in the V,;-R.y
plane: see Figure 3.3 (a). Due to its highly regular shape, a solution space can be

specified by two sets of mutually independent parameters [R;, Rx) and [V]. V%), The

_v,-_5;.‘.:_4_;.-;.«;::;:-.':»_»_;_%:‘:
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[’ R,

(a) : o (®)
Figure 3.3: A rectangular solution space and its equivalent circuit.

notation boz(R;. R;. 1;-}. V3) will be used to denote the above solution space A box
(a rectanvular solut:on space) can be physically realized by a voltage range 1n series
~ with a resistor range: see Figure 3.3 (b).
Boxes are basic building blocks in RSIM s DC-computation scheme. In order to
find the solution space on one end of a resistor R when the other end is connected
to the equivalent circuit of a box. one only has to transform thé box R units up
along the R, axis. Connecting the equivalent circuits of boz(Ry,. Ry, . ¥y,- ¥1,) and
boz(Ry,. Ry, . 15,- V2,) in parallel yields a hexagonal solution space as illustrated by
an example in Figure 3.4. Since only rectangular solution spaces are allowed in the
box method. a hexagonal solution space is approximated by its bounding rectangle
boz(R,. Ry. V. V},) where Ry, Ry,. V]. and V), are determined as follows.
Since the effective output resistance is equal to thé resistance of its component

resistors in parallel. the minimum and the maximum output resistances are

Rz = Rlz ” R2, and Rh th ” th
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Figure 3.4: The exact solution space on top of the approximate solution space
formed by concatenating the equivalent circuits of boz(4.0, 20.0, 0.15. 0.45) and
boz(5.0. 15.0. 0.6. 0.85). '

The effective output voltage is determined by the resistor divider formed between
the voltage sources. To calculate its minimum value, one should set both voltage
sources to their minimals and adjust the variable resistors such that the one which
is associated with the voltage source with the lower voltage is in its minimal while
the other resistor is in its maximal. The dpposit.e applies to finding the maximum
output voltage. In the above example, 1] and V}, are set by

"E(RZ), + ‘.2( Rl{ _ "21R1h + 1"11R21 .

if (17, < ¥5) V1 = Ise V7 = ;

if (17, 2,) Vi Ry + R, else 1; Ri + R,
e . . V1, Ry, + V5, Ry : 19, Ry, + V1, Ry
f " > 't ‘ — h h h 1 1 ‘,.7' — h h h 1 .
if (13, 2:) Vh R 1 R, else V}, N

The box method is seemingly reasonable because it is conceptually familiar —
the equivalent circuit of a box resembles a Thévenin equivalent. One advantage of

the method is that the result is guaranteed to be conservative. Any operation on a




1)0'}:. be 1t series connection with a resistor or parallel concatenation with another
box. generéftes' a solution space,which is either equal to or forms a superset of the
‘e'xact solution space: therefore. any 1%,-R., combination at a'node must belong to
the solution spaée computed by the box method. | |
TUnfortunately. the ‘con‘servvévtive'meri-t -also brings undesirablé pessimism .t-o the
“box method’s results. For ex;{i:riple. as shown pre\‘iousl}',-va hexagonal solution space
has to be a.pproxirna.t.ed by its bounding fect.angle. When vthe equivalent circuit of
" such an approximate solution space is concéttena.ted with that of another box. the

box method uses the boxes’ boundary information to compute the result. In other

,wérds., once an error or an approximation is introduced. it propagates and ampliﬁes
through operations between boxes. B\ building error upon error at places where
theyv can cause the most damage. it is possible for the solution space approximated
} _ by the box method to have a much wider voltage range thén that of the real solution
Spa.ce. Considér the example of connecting the equivalent circuits of bo:tc(]i’jg R,. 0,
0),'boz(0..o<:. 1. V). and boz(Rs. Rs. 1. 1). which is shown gréf)hicall}‘ In Figuré>3.5.

Let the value of 17 be Rl/(Rlv + R3) such that the output voltage is equal to V'

regardless of the effective resistance of the second box. In this example. the box

method does not always provide a good approxiination for the output. For instance.
if the first box is first combined with the second box. then with the third box. the
approximate voltage range 1s shown as a function of 1" in Figure 3.6. Although the
 exact output voltage is equal to 17, the approximate voltage range is equal to [0.
217 —12]. which grows wider with 1", As a result. the box method signals the output

‘to be invalid whenever 217 — 172 is greater than the low threshold; in reality, the

output is invalid only if V" lies between the low threshold and the high threshold.

The same example also illustrates another problem with the box method — its
result is inconsistent with respect to the order of evaluation. For example. if the

output voltage is computed by combining the third box with the second box and

30 . 'CHAPTER 3. FINAL-VALUE COMPUTATION
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Figure 3.5: Concatenating the equivalent circuits of boz(R;. Ry. 0. 0). boz(0. oc.
1", V). and boz(Rs. Rs. 1. 1).
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Figure 3.6: Approximate voltage range as a function of 1" if boz(R;. R;. 0. 0) is
ﬁrst combined with boz(0. oc. 17, 17) then with boz(R3. Rs. 1. 1).
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Figure 3.7: Approximate ifqlta.ge range as a function of V if boz(Rs. R3. 1. 1) is
first combined with boz(0. >c. 1. 17) then with boz(R;i. R;. 0. 0).

then with the first box. then the approximate voltage range becomes [V2. 1]. which
is plotted as a function of 1" in Figure 3.7. Although either ordering guarantees a
conservative approximation, the two results are quite different. and neither is very

good.

3.4 Diamond Method

A different heuristicv to approximate the solution space has been proposed by Ter-
man in [26]. Terman suggests using resistor dividers same as the one shown in
Figure 3.1 (a) as basic building blocks. As explained in Section 3.2, a diamond-
shaped quadrilateral can be épeciﬁed by four parameters: Ry,, Ry, (the minimum
and the maximum pull-up resistances), Rp,, and Rp, (the minimum and the max-
imum pull-down resistances). The notation diamond(Ry,, Rr,. Rp,. Rp,) will be
used to denote such a region.

- Since all resistor dividers in this method are defined between the same power
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s:upp]‘\' and the ground. coﬁneéting the outpﬁts of two resistor dividers is stra.ight'—v
forw_xard{ When two resistor dividers with solutionSpaces diamond(Py,. P h“Qll' |
@y, ) and diamond(P,. P,,. Q,,. Q»,) are connectéd. the overall pull-up resistance

must be within [Py, || Pzy. Py, || Ps,] (similarly for the overall pull-down resistance).

These two ranges are sufficient to specify a resistor divider with the solution space

diamond(Py, || P, Pr, || P2,- Ql, | Q2 @1, I| @2,). Unlike the box method. no

approximation is made in this step. |

On the other hand. the s'olufion space formed by connecting a resistor R in series
\\'iﬁh a resist:or divider diamond(Ry,. Ry,,. Rp,- Rp,) is much more complicated. It

can be constructed from that of Figure 3.1 (b) by shifting the shaded region R units

up along the R., axis. Although the result is'still a. diamond-shaped quadrilateral.

no resistor divider of the kind shown in Figure 3.1 (a) can produce such a solution
space. This result is unacceptable to the diamond method because the new solu-
tion space can no longer be merged with other resistor dividers using the previous
algorithm. Hence. the diamond method must construct a resistor divider whichi ap-
proximates this solution space. Terman reasons that the most important part of a
solution space is its voltage range. thus it 1s not compromised. This constraint fixes
the left and the right vertices of a diamond-shaped area in the 1,,-R., plane. He
also decides to preserve the lowest effective resistance seen at the output because it
seems to be more prudent to overestimate than to underestimate resistances. These
constraints uniquely define a resistor divider with the solution space diamond(A,,

-4}1-. BI, Bh) where

: Ry; Ry Ry
=Ry +R+R— A,=Rg L —k
Ai=Ry +R+ R, h v, + RRU, + RRD,
RD RD RD
B =Rp,+ R+ R—= B,=Rp, + R=— + R—".
! D, Re, & D o, Ry,

The exact and the approximate solution spaces are illustrated in Figure 3.8. Since

the exact solution space is not a subset of the approximate solution space, this




34 CHAPTER 3. FINAL-VALUE COMPUTATION

Exact solution space

R+Ruh | lRDh
' Approximate solution space

Figure 3.8: The exact solution space and the diamond method’s approximation.

approximation is not conservative.

While the box method can overestimate as well as underestimate the effective
resistances associated with the corners of a solution space, the diamond method
never underestimates them. This is best illustrated by comparing the soluﬁion spaces
in Figures 3.4 and 3.8. Since the corners of a solution space define the interface
with other solution spaces, the box method is conceivably more vulnerable to error
because it tends to exaggerate the strength of a stronger driver while understate
the strength of a weaker one. In this context, a stronger driver is the one with the
higher voltage when computing the maximum output voltage (and vice versa for a

weaker driver).
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The diamond method is also more consistent than the box method with respect
to the order of evaluation. Approximations are introduced only at places where they
are intrinsically ordef independent (1.e. series connections). Despite its conceptual
compl‘exity. the computation and menﬁor}' requirements of this scheme are no worse
than the box method.

Unfortunately. this scheme has one major drawback. As hihted in Figure 3.2 (b).

- a solution space can lose its diamond shape due to a series X transistor. However. it

is bevond the dia:(nqnd method’s ability to take the upper bound of a series resistor
range into consideration. hence. an X transistor is modeled indifferently from an 1
transistor! This inadequacy negates all the potential usefulness of this method; it
is not even clear how any nontrivial diamond-shaped solution space can be formed

without X transistors.

3.5 Improved Resistor-Divider Model

The major limitation of the diamond method can be removed by extending the set
of basic elements used to model circuits. A new scheme is proposed here. This
scheme uses four kinds of basic building blocks: resistor. resistor range, definite
block, and indefinite block. A resistor is used to approximate the conductivity of
a transistor when it is ON. Similarly, an X transistor is substituted by a resistor
range with its bounds set by the equivalent resistance of the X transistor when it
is ON and infinity.

A definite block is defined to be a resistor divider same as the one shown in -
Figure 3.1 (a) with the constraint that Ry, and Rp, cannot be infinite at the same
time. Hence, the output of a definite block‘ is guaranteed to be driven. The circuit
shown in Figure 3.9 (a) is defined to be an indefinite block. Its solution space is

shown in Figure 3.9 (b). There is no constraint on Ry, and Rp, of an indefinite
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Ry, lIRp,

N ()

(a)

Figure 3.9: An indefinite block and its solution space.

block: thus. a high impedance node is also an indefinite bloék. Other than the high
impedance case (whose outpuf is nondriven). the output of an indefinite block may
or may not be driven because the series resistor range.is conceptually equivalent to a
switch in an unknown state. Definite and indefinite blocks such as those introduced

above are referred to as definite( Ry,. Ry,. Rp,. Rp,) and indefinite( Ry, R, Rp,

Rp, ) respectively.

~ Two operators, series operator(+) and parallel operator(||), will be defined on
the four basic building blocks. Series operator operates between the output terminal
of a definite or an indefinite block and one of the terminals of a resistor or a resistor
range. The four possible conﬁbinations under this operation and their corresponding
output types are shown in Figure 3.10. Parallel operator links the outputs of two
definite and/or indefinite blocks. There are three possible combinations, and they
are shown in Figure 3.11. Series and parallel operators are defined to generate

definite and indefinite blocks only; thus the four basic building blocks are closed
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R — [Ro] |
Definite —MWWW—1O0 Definite MW—0
Definite | Indefinite
R R0
Indefinite —VMWW—O {1 Indefinite —AVWA—O
. Indefinite Indefinite

Figure 3.10: Domain and output type of the series operation.

Definite | Definite Indefinite
o | ) | 1o
Definite Indefinite Indefinite

Definite Definite Indefinite
Figure 3.11: Domain and output type of the parallel operation.

under the two operators. This property is introduced such that a complicated circuit

- can be built or analyzed from the fundamentals.

3.5.1 Series Operator

Ideally. the series operator would find the exact equivalent. in the form of either a
definite block or an indefinite block. for the unconnected terminal of the resistive
element. However, it has been shown in Figure 3.8 that even for the simplest case

- of a definite block in series with a resistor, the result does not have a definite-block
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or an indefinite-block equivalent. In general, none of the combinations shown in
- Figure 3.10 has either a deﬁnite-block or an indefinite-block ‘equi\'a]ént. In order to
~ satisfy t-bhe-ﬁr‘opérty t‘h'a.i' ija,sic buiiding blocks a.xré_’él(’)sledfm_ider the series opéra.tor.
the operator is deﬁr_ied‘ as follows: it produces a ‘déﬁn_it.e ‘or an .indeﬁllit.e block. -
depeﬁdingon u’héf.her the output 1s guaranteed to be Vd»rivén., whose minimum and
~maximum output voltages and their corfespon‘ding minimum resistances match the
‘exact solut.ibn space. This definition is different from the or‘xe“ u_sle:d’vb'}' the diamond

method in that the diamond method matches the minimum and the maximum
voltages and the overall minimum equivalent resistance séen at the output. The
new ‘deﬁnition is made to eliminate errors at the left and right corners of a solution
spa.cé: after all. the maximum range of the \'Qlta.g'e‘is the sﬁbj'ect.bof this studx. Of
~ the four cases shdwn in Figure 3.10. three of them generate indefinite blocks because
their oﬁtputs are not guaranteed to be driven: only the series cc‘>nneicti“on‘ between
a definite block and a resistor produces a definite block. The latter combination is
illustrated with an example in Figure 3.12. The series operator is summerized as

“follows:

definite( Ry, Ru,. Rp, Rp,) + R = definite( Ay, Ay. Bi. By).

indefinite( Ry,. Ry, . Rp,-Rp, )+ R = indeﬁnite(A;._.4;,.Bl.Bh).»
definite(Re. Ry, Rp,. Bp, )+ [R.oc] = indefinite(Ar. An. Br. By).
indefinite( Ry, Ry, . Rp,- Rp, ) + [R.00) = indefinite(A;. An. B, By) (3.1)

* where
Ry Ry
-41—R01+R+R bla -4h R[h+R+R Lh’
RDh RDz
Rp, Rp,

Bi=Rp,+R+R B,=Rp,+R+R

R[,’h ’ RL:’,
This operation is guaranteed to be conservative because the approximate solution

space is always a superset of the real solution space.
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-g?d

R+R%"&%

- Exact solution space
Error due to approximation

R+RqHRq

RUh ”RDI RUI ”RDh

Figure 3.12: The exact solution space on top of the solutlon space defined by the
series operator at the output of a resistor R when the other terminal of the resistor
1s connected to a definite block deﬁnzte(RL, Ry, . RD, RD,,)

Error introduced in the series operation does little damage, if any. to the ac-
curacy of the overall result due to a subtle but important property of the solution

space: if all resistor dividers are defined between the same power supply and ground

(in other words, only definite and indefinite blocks are allowed), then the solution -

space of a definite block can be bounded by its left and right corners. This is
because the right corner of a definite block's solution space has a lower pull-up
resistance but a higher pull-down resistance than any other point in the solution
space. Hence, when the definite block is combined with any resistor divider between
the same power supply and ground. this combination is guaranteed to minimize the
combined pull-up resistance and maximize the combined pull-down resistance; as a

result. it produces the highest combined voltage. Consequently, this combination is

e
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labeled as the strongest pull-up combination of the definite block. Similarly. the left
corner has the highest pull-up resistance but _the lowest pull-down resistance. and
is labeled as the strongest pull-down combination. The analysis can also be applied

to the solution space of an indefinite block becauSe an indefinite block is basically

" a definite block in series with a switch.

_ With reference to Figure 3.12. the approximate solution space. according to the
above afgument._ is bounded b’\ the left and right 'gofﬁers-»,of its solution space. At
the same time. these corners also match the left and right corners of the exact
solution space. Thus. the appfoximate solution space represents the smallest region

which is still conservative and is realizable by either a definite block or an indefinite

block. -

3.5.2 Parallel Operator

‘The parallel operator would ideally provide an exact equivalent for those parallel

connections depicted in Figure 3.11. Yet it suffers the same problem as the series
operator — an exact equivalent is not always realizable by either a definite block or
aﬁ indefinite block. Approximations targeted at minimizing errors at the left and
right corners of a solution space will be introduced to define the parallel operator.

The parallel connection between two definite blocks. definite( Py,. P1,. @1,. @1,,)
and defintte( P, P,,. Q,,. @3, ). has been worked out in Section 3.4. Its result is

restated in the following expression:

definite(Py,, Py,.Q1,-@Q1,) || definite( Py, Py, , Q2. Q2,) =
definite( Py, || Py,- Py, || Pa,. Q1 |l Q2 @1, || @2,)- (3.2)

No approximation is required.

It is more complicated to define the parallel operator between a definite block

definite( Py, P1,, Q1,- @1,) and an indefinite block indefinite( Py, P,,, Q2,5 @2, )
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The indefinite block may or may not coﬁtribﬁte to the output depending on the
resistance of its series resistor ‘ra.nge. A conservative approach is to take both
extremes into considerations. At one extreme. the resistance of the series resistor
range is set to zero such that the indefinite block behaves like a definite block. In

this case. the output solution space is equal to

deﬁnite(P;l “ Pz,s Pl,, ” Pz‘,,-, Ql, ” Qz,é th ” Qz,,)--

This solution space can be bounded by its left and right corners. The other scenario
1s to assume the series resistor range to have infinite resistance. In this case, the
output of the indefinite block is in high impedanéé. Hence. the solution space of
the combined output is the same as that of the definite block. This solution space
can also be‘ bounded by its left and right corners. In either extreme, the combined

output is driven; hence. the output type is definite.

In order to satisfy the conservative criterion, the output solution space is approx-
imated by the smallest region in the V,,-R,, plane which contains all four corners
in the above two cases and which is realizable by a definite block. This concept is
graphically illustrated in Figure 3.13 (b) where each pair of left-and-right corners
are joined by a line for clarity. It is easy to tell from this figure that the top pair is
set by the definite block alone because they have higher equivalent resistances than
the lower pair.

The upper bounds of the approximate pull-up and pull-down resistor ranges.
Ry, and Rp, in F igufe 3.13, are set by the upper bounds of the definite block's
pull-up and pull-down resistor ranges. By the same token. the lower bounds of the
approximate pull-up and pull-down resistor ranges, Ry, and Rp, in Figure 3.13. are
set by the lower bounds of the combined pull-up and pull-down resistor ranges when

the resistance of the series resistor range of the indefinite block is set to zero. This
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: : Ry IR
[Ry, Ry, L
[Rp Rp ]
D, "Dy Ry lIRp
(2 S (®)

Figure 3.13: Approximate solution space of a definite block in parallel with an
indefinite block. »

result can be expressed as follows:

deﬁnite(Plz‘ Plht Ql[' th ) ” indeﬁnitC(le, ch, Q?l'.' QQ},) =
definite(Py, || Py Pryy Qu || Qe Q1) (3.3)

Error will be introduced in this step.” As shown in Figure 3.13. the strongest pull-
down combination (the left corner) of the approximate soilut‘ion space 1s stronger
than any pull-down combination of the exact solution space; similarly, the strongest
pull-up combination (the right corner) of the approximate solution space is stronger
than any pull-up combinatioﬁ of the exact solution space. Thus, the approximation
is always conservative, but it can occasionally be pessimistic as well. The following
example illustrates the ,nﬁost pessimistic scenario.

Assume that both the pull-up and the pull-down resistances of a given definite

block are equal to R. and both the pull-up and the pull-down resistances of a given
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indefinite block are equal to 7. When the outputs of these two blocks are connected

together. one can easily see the combined output has a voltage of 0.5 regardless

" of the state of the X transistor associated with the indefinite block. However.

according to Equation 3.3. the improved resistor-divider model approximates the

* result to be definite(R || r. R. R || r. R). This approximation can be extremely

pessimistic when r < R — the approximate voltage range is equal to [0.1]. In

general. the approximation tends to be pes$i1nistic when the pull-up and the pull-

" ‘down resistances of the definite block are much larger than that of the indefinite

block.

The parallel operator also has to be defined between two indefinite blocks; say
indefinite( Py,. Py,. @y, @1, ) and indefinite( Py, . P,,. Qy,. @3,). In essence. this case
is the same as the case between a definite block and an indefinite block. However.
the output here can either be in one of the three driven states or be in the high

impedance state. The three driven scenarios are derived from different combinations

‘of the two series resistor ranges. Each of their solution spaces is bounded by its

left and right corners. The approximate solution space is defined to be the smallest
region in the 13,-R., plane which contains all three pairs of corners and which is

realizable by an indefinite block. Mathematically, it can be stated as follows:

indefinite( Py,. Py, . Q1. @1,) || indefinite( Py, Py, Q2,-Q2,) =
indeﬁnite(Pll ” le- maX(Pl,,-.ch)-, le H Qz,: max(th.th)). (3.4)

The parallel operator introduces error in this operation just like it does to that

between a definite block and an indefinite block.

3.5.3 Merits

The improved resistor-divider model has the following merits. First of all, the

state of an X transistor is not predetermined: instead. it is properly handled as an
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unknown. As a result, the major drawback of the diamond method is eliminated.
Secondly. this scheme computes the exact voltage range for a node when there is
no bridging X transistors in the associated cluster. In other words. X transistors

whicli lead to the power supply or ground do not result in-any error. This is because

“without bridging X transistors. the only indefinite blocks are 1) a node driven to

the Vidd through an X transistor. 2) a node driven to the ground through an X
transistor, and 3) a node driven to the Vdd through one X transistor and to the
ground through another X transistor. These circuits are shown in column (a) of

Figure 3.14.

In order to proof that these three circuits do not int-rodlicehncertaint}' to the
final-value computation. one can look at their equivalenté shown in Figure 3.14 (b).
The equivalents hé\-'e all the characteristics of a definite block except that they are
not guaranteed to be driven. When any of them is combined with a definite block.
Equéﬁioﬁ 3.2 gives the exact solution. Since Equation 3.3 gives the same result
under t‘he same situation. it is also free of error. | h

When any two of the circuits shown in Figure 3 .14‘V(Aa) are combined, the output
still belongs to the same group of three circuits. The exact solution can either
be 6btained by Equation 3.4 or by applyving Equation 3.2 to the cbrresponding
equivalent circuits. Thué. if a cluster has no indefinite blocks other than those
shown in Figure 3.14 (a). then the improved resistor-divider model gives the exact
solution.

The box method. on the other hand. does not have the same characteristic.
As explained in Section 3.3, a nondegenerate box appears whenever there is an X
transistor, and error propaga.tes and amplifies in the box method through parallel
box operations which involve at least one nondegenerate box.

This brings up another merit of the improved resistor-divider model: error prop-

agates slower in this scheme than in the box method in general. This is because
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. [ RU, RU] [ Ru,w]
[ ”
[co,c0 [co,c0
[co,o0]
2)
[Rp,co]
[Ru,=0] [Ru,e0]
[ 0 9 w]
3)
[Rp,oo] _ [Rp,eo]
(2) ®

Figure 3.14: Three indefinite circuits (column (a)), which do not introduce uncer-
tainty to the final-value computation, and their equivalents (column (b)).
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Figure 3.13: Approximate voltage range as a function of V" = R;/(R; + R3) if

definite(oc. oc. Ry. Ry). indefinite(R3. Rs. Ry, Ry). and definite( Rs. Rs. oc. x¢) are

paralleled together. :

. parallel operations between definite blocks do not need any approximation. hence.

error is confined to parallel operations involving indefinite blocks. When an indef-

iﬁit_e block 1s combined with a definite block in parallel. error can be introduced:

however, since the result is a definite block. the error does not amplify itself through
future operations! For instance. if the improved resistor-divider model is applied to -

the example
deﬁnite('oc. . R;y. R;) || indefinite(Rs. Rs. Ry. Ry) || definite( Rs. R3.oc. oc)

as described in Section 3.3. the result is shown in Figure 3.15. This result is less
pessimistic than the ones shown in Figures 3.6 and 3.7 because the bounds are
much tighter; yet it is still conservative because the shaded region includes the
exact solution space.

The result shown in Figure 3.15 is order independent because the improved
resistor-divider model is order independent. This can be proved by looking at the

definitions of the series and parallel operators. The series operator is intrinsically
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order independent because it is controlled by the circuit ropolotr\ The parallel
operator has three variations. The two variations expressed in Equations 3.2 and
3.4 are order 1ndep¢ndent because finding the parallel or the ma_\nnum of a group
of numbers is order independent. The third variation. which 1s expressed in Equa-
tion 3.3. involves a definite block and an indefinite block. and the upper bounds of
the indefinite block’s pull-up and pull-down components are ignored in computa-
 tion. » This variation does not cause order dependency because 1) if the indefinite
block"is ﬁ:sﬁ combined with an indefinite block. then the result is still an indefinite
block: 2) if the indefinite block is first combined with another definite block. then
its upper bounds are ignored in that operation.
Last but not the least. the computational “complexity‘of this scheme is low. and
its data structure is simple. As a matter of fact. this method uses no more resources
than eit,hér the box method or the diamond fnethod. The implementation details

are discussed in Chapter 6.

3.6 Simulation Example

The example shown in Figure 3.16 is encountered during the simulation of the
MIPS-X processor{11.10]. which is a CMOS design with an on-chip instruction cache
of 2K bytes. This example provides a realistic comparison between the box method
and the improved resistor-divider scheme.

The figure shows the 6-T RAM designed for the instruction cache. When RSIM
is first activated, nodes B. C, and D of the circuit are all in unknown states. In
order to write a zero into the memory cell, signal A4 is first raised such that the bit-
line capacitor can be discharged. Then the word-line control signal will be raised
to pass the low signal into the memory cell. At this moment. the state of node D

1s still unknown, hence RSIM thinks that the lower inverter of the memory cell can
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|

bit

wofd Hne

Figure 3.16: A 6-T RAM and its driver.

fight with the much stronger bit-line driver. The cluster of interest is circled in the
drawing. |

RSIM models the cluster as a resistor network. The version of RSIM that runs
at Stanford sets the normalized low and high thresholds at 0.4 aﬁd 0.6 respectively.

It also sets the effective ‘resistances of nMOS and pMOS transistors as follows:

nMOS pMOS

Dynamic Low || 6000 2/ O | 24000 2/ 0O
Dynamic High || 12000 Q/ 0 | 12000 /D

Thus. the circled cluster becomes a resistor network shown in Figure 3.17.
In order to.compute the voltage at node C. Figure 3.17 can be partitioned into
three subcircuits as illustrated. The box method views each subcircuit as a box.

and computes the output according to rules described in Section 3.3. Assume that
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Subcircuit #2
[4000,0]
Subcircuit #1
B 2500 C
167
° [2000,00]
Subcircuit #3

Figure 3.17: A resistor model of the circled cluster shown in Figure 3.16.

| bozl. box2. and bor3 represent the solution épaces of subcircuits #1. #2. and #3

respectively. Since the box method is order dependent. its approximation can vary
with hov\"boxes are combined. If borl is first combined with bozr2 or bor3. then the
approximate output voltage range is [0.0.4]. This range accurately reflects the worst
case scenario for the output, and node C can be properly driven to the logical low
state. However. if bor2 and bor3 are combined first. then the output voltage range
becomes [0.0.67)! In this case. the box method signals the output to be invalid.
Thus. if the order of evaluation is totally random, then in one third of the time, the

box method cannot properly initialize this memory cell.

On the other hand. the improved resistor-divider model views subcircuit #1 asa
definite block while it views subcircuits #2 and #3 as indefinite blocks. It computes
the output voltage range to be |0.0.4] regardless of the order of evaluation. Thus,

the memory cell can alwavs be properly initialized.
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3.7 Summary |

Transistors With'unkno'vs-'nbgat.e states (i.e. X transistors) post great difficulties
to the determination of DC voltages. These transistors introduce uncertainties to
simulat.ors because they can be considered as either condﬁcting or nvonconduct.i.ng:
thus. they can vary the electrical comlectivit v of a circuit.

Since the logical state of a circuit depends only on the minimum and maximum
voltagec that the circuit can reach. simulators need not to exhaustively evaluate
all ach:evable \oltacrec of the circuit. There are many heunsucs to approxnna.te
an achievable voltage range. A better known heuristic is the one i.mplemented in
RSIM. This heuristic is shown to be conservatlve. but | it also has many problems.
For example. it can occasmnall\ give pessimistic approximations. and it suffers
consistency problem — its results may depend on the order of evaluation.

A new DC-computation scheme is introduced in this chapter. This scheme is
also conservative, but it is in general less pessimistic than RSIM’s scheme. The new
scheme is self-consistent in that its results aré not order dependent. An example
from an actual simulation shows that the new scheme compares favorably to RSIM's

scheme.
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Chapter 4
Linear Chargé—Sharing Models

4.1 Overview

The tiﬁ1ing models reviewed in Chapter 2 assume that charge flows unidirectionally
between capacitors and a voltage supply, and that voltage waveforms are monotonic.
In fealit}'. neither the unidirectional nor the monétonic assumption 1s universally
true. For example, if a network does not have a voltage source, then there 1s not
an exclusive supplier or drainer of charge. Hence, if charge is to be redistributed
among the capacitors of such a network. it is incorrect to assume that the charge will
always flow in one direction. Another example is that if capacitors in a network start
at different voltages, then their waveforms may not be monotonic. Complications
c.auséd by the redistribution of charge among capacitors are commonly referred to
as charge-sharing problems. This chapter focuses on how to model charge sharing
on RC networks. |

Charge sharing often occurs in IC’s and causes problems to switch-level simu-
lators. Formal definition and detailed analysis of charge sharing are provided in
Section 4.2. Sections 4.3 and 4.4 then introduce methods that can be used in a

switch-level simulator to model charge sharing. These methods are presented with

-
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both mathematical and conceptual arguments. Mathematical argument is based on .
the frequency-domain a11a15'5is, which expands a network transfer function. On the-
. other hand. a more intuitive physical picture provides insight for easy understanding

and potential improvement s. The parallel between mathematical rigor and physical
basis als‘o helps the construction of charge-sharing models for nonlinear xietw'or,ks in

the next chapter.

4.2 Chargé-Sharihg Networks

Charge sharing refers to the voltage variations on nodes caused by the redistribution
of charge when two RC networks at different steady-state volt.éges are connected
together. There are two kinds of charge sharing. The first kind is pure charge $har-
ng in'whjch two nondriven RC subnets are connected through a resistive switch.
Since sharing charge is the only means to achieve voltage variations, it is impor-
tant to model the charge-redistribution process in order to calculate the elapsed
time for a node to reach its switching volﬁaﬁge — a threshold between the old and
the new logical states. A simulator can use this delay information to schedule the
transition events at the correct time. The lack of an active drive in pure charge
sharing causes a great problem to the single-time-constant model which uses the
dominant-pole approximation. The dominant time constant in pure charge sharing
is infinite (since the nodes are not driven to either 0 or 1), which is much slower
than the time constants set by the redistribution of charge. Since a major voltage
variation occurs during the redistribution of charge, a single time-constant model
is Inadequate.

The other kind of charge sharing is illustrated in Figure 4.1. Charge sharing
with @ driven path is the same as pure charge sharing except that one of its subnets

has a resistive path to a voltage source. The subnet with the driven path will
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RC Subnet A
T e

#1

Driving Tree - | Charging Tree
Figure 4.1: Charge sharing with a driven path.

be called the driving tree. In the steady states before and after the concatenation.
capacitors in the driving tree have the same voltage as the voltage source. The other
subnet which is not driven initially will be labeled as the charging tree. Capacitors
mm the charging tree start at a certain voltage but are eventually driven to the
steady-state voltage equal to that of the driver in the driving tree. A model for this
kind of charge sharing needs multiple time constants because there are two events
ha.ppex-ling simultaneously. One event iis caused by the-redjstribu.tion of charge.
and the other is due to the driving source. A node in the charging tree alwavs
has a monotonic voltage waveform. and the two-time-constant ‘model described in
Section 2.4 works well. A node in the driving tree is more Eomplicated since it
starts and ends at the same voltage but can have a voltage spike whose amplitude
1s large enough to cause the node to temporarily change its state. The amplitude
of a voltage spike is defined to be the maximum voltage fluctuation during the

transition. In order to catch glitches. a simulator must calculate these fluctuations.

Charge sharing occurs in many places. In nMOS designs, precharged logic is used
to gain speed while avoiding static power dissipatiori. This circuit technique works
through pure charge sharing: a precharged node shares its charge with another

node. which has a much smaller capacitance. without degrading its signal level.
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Nondriven clusters can also occur due to flaws in design or simulation vectors. -

Charge sharing with a dr_i\'en' path appears in all kinds of MOS technologies.

Irv corresponds to situations where a switching pass transistor connects an actively
~driven network. such as a gate. with a high-impedance fan-out network whose ca-
'pa;cit,ors are initially charged to a different polarity.

At present. most switch-level simulators. including RSIM. use ad hoc approaches
to model these events. Without a good timing model. these simulators assume‘
that charge-sharing events hapj)en instantaneously and schedule them before driven
events. To est.ima.te the amplitudes of voltage spikes. these simulators use the ratio
of the total charge to the total capacitance and in essence ignore all the resistors

in the circuit. These schemes often introduce fictitious events that slow down the

speed of simulation and sometimes cause flip-flops to latch incorrect values.

Two examples demonstrate these shortcomings. The circuit shown in Figure 4.2
is similar to the barrel shift._e'r'_ of the MIPS processor[20]. which is an nMOS de-
sign. The node marked N reads from one of the several sources. Each source is a
precharged capacitor of 2 pF. Assume that ¢ (phi) goes high ahead of Load.1 such
‘that by the time Load. goes high. the voltages of the capacitors on both sides of the
transistor gated by ¢ are the same, and their values are different from that of the
source capacitor. The elapsed time for node N to change its logical state is crucial
in determining the speed of this barrel shifter. An effective-resistance model of the
circuit is shown in Figure 4.3. If node N is scheduled to change instantaneously as

suggested by RSIM, then the performance of the circuit is overestimated.

The RAM cell from the MIPS-X processor. which is shown in Figure 4.4, il-
lustrates another problem in simulating charge shaning. In order to read from the
memory cell. both b7t and bit are precharged. Assuming a zero is stored in the cell
when the word line goes high. one can see that the large ratio in capacitances be-

tween the bit line and the internal node will cause a voltage spike on the latter. An
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Precharge [ : ' .
. ’ Load.1 - Phi
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Figure 4.2: A circuit which is similar to the MIPS processor’s barrel shifter.

6000 \V 6000 N
—AWW— AW
—__ 2pF —__ 5pF T .02pF

L | _ _

Figure 4.3: An eflective-resistance model of the barrel shifter shown in Figure 4.2.
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bit R bt
word line
¢ 1 » y—e— 1 ¢
6/2.5 o '
o . ,
, P: 6/2
— _ 5pF
N:6/2
—.— 05pF

Figure 4.4: The RAM cell designed for the instruction cache of the MIPS-X pro-
Ccessor.

effective-resistance model of the RAM's read/write network is shown in Figure 4.5.
The access transistor’s effective resistance is doubled because it is passing a high
voltage. Despite the ten-to-one ratio in bit-line and internal-node capacitances. the

amplitude of the voltage spike is merely 0.25. However, a simpleminded approach

such as RSIM’s, which uses the ratio of the total charge to the total capacitance.

predicts a voltage spike with an amplitude of more than 0.9. This poor prediction
propagates through the cross-coupled inverters and destroys the value stored in the

cell!

As the next sections will show. by using only a slightly more complex method.

one can form much better estimates of the charge-sharing effects.
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- 5000 - 2000
(Access transistor) \_Y - (Pull down)
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—T— (Bit line) | —— 05 pF

Figure 4.5: An effective-resistance model of the RAM’s read /write network.

4.3 Pure Charge Sharing

In a pure charge-sharing network, the steady-state voltage V7 is determined by the
‘ratio of the total charge to the total capacitance. However. during a transition.
the voltage at any given node is closely coupled with its neighbors. which makes
a closed-form solution very complicated. In some sense, eﬁ’en a single-driver RC
network can be classified as a special case of pure chafge sharing because the vo-ltage
source 1s functionally equivalent to a gigantic capacitor with the initial voltage equal
to that of the voltage source. As a matter of fact, pure charge-sharing networks
and single-driver networks share many common characteristics. For example. both
kinds of networks are linear svstems, and their transient waveforms are usually
dominated by a single pole. The reason for the transient or the charge-redistribution
portion of a pure charge-sharing waveform to have a single pole is that pure charge-
sharing designs usually have a dominant capacitor that acts as a virtual voltage
source. Thus. pure chérge-sharing problems can be approached in a way similar to
that of the single-time-constant model: by calculating the area between an output
waveform and a time-independent line representing the final voltage and choosing an
exponential function with the same area and boundary conditions. This approach

was also independently suggested by Raghunathan and Thompson[23.22].
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In the s1ngle time-constant model. an output voltage is expressed in terms of

. capacitors’ currents flowing towards a fixed voltage source. Howe\ 'er, In pure charge-

%harmﬂr networkq all nodes are floating: there is no dr:tmtfuxshed node which acts
as a supplier or dramer of charge Nevertheless. a denxatlon siumilar to the one in
Section 2.4 can be followed to express the voltage difference between any pair of -
nodes. After the voltage differences between every node and a randomly selected
reference node r are estabhshed conservation of charge can be used as an addmonal

condition to decouple the relationship.

4.3.1 Waveform Estimate .

- If each capacitor C; of a pure charge-sharing network is replaced by its equivalent

current source #j = —Ck%“. the voltage difference between node e and the reference

node can be written as

, dv; -
V.-V, =S Rpix= _ZR;eckd—t" (4.1)
k k '

where R;e is the resistance of the path to the reference node r shared by both node ‘

k and node e. The area between V, and V; in the time domain is equal to
oo . . Vy Vy
fvi-va = -SR-S R [
k 1 k 0

= Y RLCl-1; Y RLC
k k

o ‘ (4.2)

‘where C} is equal to Cy if Cy is at logical high initially and zero otherwise (vice versa

for C}). Equation 4.2 is not the desired result because it gives the area between

two waveforms which are changing simultaneously. Conservation of charge provides

the necessary information to decouple node r from node e. Since > C Ve = Crly

where Cr is the sum of all capacitances, one can multiply both sides of Equation 4.2
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by the capacitance C, of node ¢ and sum over corresponding equations from every

node to give an equation for [¢~ V; — 17 dt:

}:/ Co(V. = Vo )dt = C’T/ V=T, dt =3 Cory.
—~Jo 0 : - '
Combining this equality with Equation 4.2 gives the area between the waveform T

at any node € and 17}:
/ ‘; — ‘} (H’ = TA: bt CT_I Z C;_.TA; . ‘ (43)
0 , : k

Assuming the transient waveform is dominated by a single time constant. the esti-

‘mated voltage waveform 17" is

Crrar~-3, Ci %A;
(l—\'f)CT
IS C'A—TAj "CTTA:

¥y (1 =1y )et/™ (for falling 177)

Vo=9 where 7, =
Vi1 — et/

T 6r (for rising 1.7)

(4.4)

This modél i1s used to estimate the voltage wiaveform at node \ of the RC
mnetwork.shown in Figure 4.3. Comparison with the exact waveform is plotted in
" Figure 4.6. The model works extremely well for this example because the circuit in
Figure 4.3 practically has only one nondegenerate pole. Although the approximation
for a more complicated circuit is not guaranteed to be as good as this one. designs
with pure charge sharing in mind are usually quite simple.

The time constant 7, in Equation 4.4 may seem counterintuitive at first glance
because 74; varies with the reference node. As a matter of fact. Raghunathan and
Thompson[23.22] suggested always using the node of interest to be the reference.
Their scheme results in excessive computation because a different set of parameters
is required for each and every node. Computation can be drastically reduced by
using one randomly selected reference node. since Crrar — i Ck74r is a constant
regardless of the node chosen to be the reference! The consistency of this result is
not a coincidence. The next section will prove that the above result is a degenerate

version of the standard two-pole-one-zero model.
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Figure 4.6: The pure charge-sharing model versus the exact waveform for node N
in Figure 4.3 ‘

4.3.2 Frequency-Domain Interpretation

Since the time-domain derix_’ation 1s based on an intuitive understanding of the
single-time-constant model. it says little about the fundamentals of the model. In
order to discover the limitations and pitfalls of this result, frequency-domain analysis
is carried out. A new network is first constructed by connecting a weak driver to
any node r of the original pure charge-sharing network. The weak driver consists
of a fixed voltage source equal to 17 in series with a large resistance R;. Although
the total charge in the new network is the same at time zero and infinity, charge is
continuously introduced or drained by the voltage source before the system reaches
equilibrium. Yet in the limit of a very large R;, voltage waveforms in the new
and the old networks are practically the same for timing purposes. The reason to
construct the new network is to provide a reference node with a fixed voltage. such
that the standard frequency-domain formulation can be applied.

In this new system, voltage 17* at node e with respect to the voltage source

becomes 1" ~ 1y = = (R + R;e)de—:;*:. and the network transfer function at
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-node € is equal to

H(s) = /d(‘?—‘})-!—s/o'x'(]';'—T}V) dt-.s-?/:'t(1;*—1})df+---

(Vy=1) 4srg — & Zk(RL' + Ry, )C'kT_4;.+ -+ (if V7 starts at (12 5)
e .5
1y +s74r — & (R + R}, )CkTA; + .-+ (if V" starts at 0)

It is worth noting that the area between 1. and 1% in the new system is exactly

the same as the area between 1 and 1) in Equation 4.2 but is quite different from

the area between 1, and 17 in Equation 4.3. Although 177 can be as close to 1} as
desired by increasing R;. a large Ry results in a slow charge-restoration process. In
other words, the weak driver significantly changes the area and higher moments of
a waveform without a noticeable change to the waveform itself.

The network transfer function can be approximated by models with different
degrees of accuracies. However. a single-time-constant model cannot catch both the
charge-redistribution and the charge-restoration portions of a waveform. The two-
pole-one-zero model given by Equation 2.2 is the next simplest model. By matching
the coefficients of the first three terms in Equations 2.2 and 4.5. one can show that
the ratio between the product and the sum of the two approximate time con‘stants.,

Tyme = T173/(71 + 72 ). bears the following relationship:

Crrap=3, Chrar ..o
Ar= 2 Cotar (if 17~ starts at 1)

: T

hm TMe = (a-4yCr .
R — o Z CkTA'f"CTTA' R .

L= a v (if 17 starts at 0)

Since the sum of the two approximate time constants. 7p = Y, (R + R )Cy, is
unbounded when R approaches infinite, one of the poles is located at the origin,
and the other is at —1/7p.. A pole at the origin gives a degenerate time constant.
which accounts for the restoration of charge by the weak driver. On the other hand,
the faster time constant controls the transient. This derivation gives the same result

as that of the time-domain approach. : v '
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In general. higher order of accuracy can be obtained, at the expense of compu-
tational complexity, by modeling the transient with more than one pole. In reality,

such extra accuracy is seldom necessary for switch-level simulators.

4.3.3 Limitations of the Model
An intrinsic imitation of the model is due to the implicit assumption that waveforms

in pure charge-sharing networks are monotonic — the area between a waveform

- and the time-independent line representing the final voltage increases monotoni-

cally with time. This condition is only guaranteed for charge sharing between two
capacitors connected by a resistor. Therefore. it is not surprising to find out that
the model gives the exact solution to such networks. Unfortunately. in its most
general form. a waveform in a pure charge-sharing network can cross V7 several
times before settling at the steady state.

In the time domain, the area computed by Equation 4.3 cannot differentiate a
monotonic waveform from a waveform crosses 17 several times. In the latter case.

the areas below and above the reference line can partially cancel each other. In the

- frequency domain, high-frequency poles are ignored when the transient is modeled

by a single pole. With these limitations in mind. it is not hard to construct a
hypothetical circuit which cannot be properly handled by the above model. Aﬁ
example is shown in Figure 4.7.

Assume that only the capacitor at node c is charged high initially. The capacitor
at node b is negligible comparing to its neighbors. and the resistor to the right of the
switch is much smaller than the one to the left. When the switch is closed, charge
sharing is done quickly between nodes b and c. This drives the voltage of node b
across the final voltage as shown in Figure 4.7. Due to the large resistor between
nodes a and b, the capacitor at node a does not come to play until a later stage.

Looking at the frequency domain. one can see that the network transfer function
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Figure 4.7: A hypothetical pure charge-sharing network which breaks the model.

of node b has a low-frequency zero which partially cé.ncels the lov\-’-frequencv}‘ pole
contributed by node «. hence. the high-frequency pole becomes important. This is
exactly the same reason why some circuits fail the single-time-constant model as
described in Section 2.4.

The aforementioned pure charge-sharing model can only reasonably approximate
the waveforms at nodes a and ¢. The area of the voltage waveform at node b 1s
negative. and consequently its approximate time constant is also negative. which
literally means that the waveform is unbounded when time approaches infinity.
This unexpected result 1s easy to detect. and a safeguard can be built in. Since it 1s
prohibitively expensive to come up with a more accurate model for this rare error.

the time constant in Equation 4.4 can be redefined as

Crrar— CrTar .
max (0, ?;_‘Z,j:)kcr A") (if V" starts at 1)
Te = Crtar =Crryr °
max (0._ 2 k‘,:f‘.T A') (if V" starts at 0)

Even though the new definition can occasionally underestimate a delay. it is

guaranteed to do no worse than scheduling a charge-sharing event instantaneously.
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4.4 Char‘g‘e Sharing with a Driven Path |

The general two-pole-one-zero a.pproxima.tion can also be used to estimate the am-
pl‘itudéé of voltage spikes-in driving trees. Assume. without loss of generality. that
- the d‘ri\'ingb source of a network is the ground. Thus. driving-tree nodes start and
end at the ground voltage. Thé network transfer fﬁnctions of these nodes must
have a zero at the origin. A proof is provided in Appendix A. A'zero at the origin
contradicts the basis of the two-pole model described in Section 2.4. which assumes
: that one pole is closer to the origin than all other poles and zeros. The breakdown
in assumption calls for a different kind of approximation.

In order to take the dominant zero into Considera.tipn-, the network transfer

function should be approximated by

‘ ks -
H(s) = = k(s — (T I
(8) (1+sm)(1+sm) (s=(m +7m)s+--)

Since the coefficients of s and s? shown here are not the same as the corresponding
coefficients from the two-pole-one-zero model given by Equation 2.2, a separate

derivation is necessary for this case.

4.4.1 Amplitude Derivation

For a two-pole-one-zero-at-the-origin system to match the area and the first moment
of a real waveform, the sum of inverses of the two approximate poles. 7p, = 7 + 72,
is equal to

_ Pk ReeCiTa,

‘i’}:'e
TAC

where 74, = [V, dt=Y RuCf .
0 k

This is in contrast to other two-pole-one-zero models where the sum = + 7, =
> » RixC depends strictly on the circuit configuration. 7,4, can be interpretated as

a modified form of the Elmore’s delay — a form taking the initial charge distribution
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" into formulation. However. delay is meaningless for nodes in driving trees because

they start and end at the same voltage.

‘Since a two-pole waveform cannot be uniquely specified by its area and first
moment. this model returns a family of waveforms as a function of the approximate
lowest-frequency pole. —1/7,. The approximate volt,agebwaveform V" of node € of

the driving tree can be expressed in terms of 7;:

_ A, [6—1/7’1 _ Ef—tl(rp._—n) N

The peak amplitude of 177, as a function of 7. is equal to

_ - -n/(2n~1p,)
TAe ( T1 . .
TP, — T1 \TP, — TN v

By definition. the dominant pole is closer to the origin than any other poles. so for

a two-pole system, (7p,/2) < 71 < 7p,. In this domain. the peak amplitude of wave-
forms in a family increases monotonically with 7 and is bounded by (2/¢)(74,/7p,)
and 74,/7p, (the value of the lower bound is approximately equal to 73.6 percent of

that of the upper bound).

4.4.2 Physical Interpretation and Improvement

The above mathematical model can be improved by investigating its physical basis.
The charge-sharing network shown in Figure 4.8 has exactly two poles. If C, is
charged high initially, then the network transfer function of node E has a zero at
the origin. In other words. the two-pole-one-zero-at-the-origin model actually tries
to map a node in the driving tree to a node in a two-capacitor-two-resistor circuit.
The mapping is done by matching geometric waveform characteristics such as the
area and the first moment. The mapped two-capacitor-two-resistor circuit will be
defined as the reduced network of the original node. Unfortunately, the two matches

are insufficient to determine the four unknowns in a reduced network. As a result.
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o

“Figure 4.8: The simplest circuit with two poles and a zero at the origin.

the amplitude calculation leaveé a 26.4 percent (1.e. 1 — 3) uncertainty between the
lower and the upper bounds Additional constraints can be 1ntroduced to narrow
the search space. The obvious one 1s to compute the second moment of a node s
step response, which. however. is computationally expensive. A subtler but much
cheaper to compute constraint can be used.

Since both the original and the reduced network are linear s‘\"st.ems. the locations
of their poles‘are subject only to their nétwork topologies. Hence. a reduced network
should be reasonablely capable of modeling the original node regardless of the initial
charge distﬁbution, One way to ensure this capability is to in’produce_an additional
constraint such thaf if all capacitors of the original and the reduced systems are

charged high initially. the Elmore’s delays of node E of the reduced network and

" node ¢ of the original network are equal. The Elmore’s delay of node ¢ can be derived

from the topology of the original network and is equal to 7p, = Y, Ry.Cx. This

~constraint does not interfere with or contradict to the area and the first moment

constraints. Solving these constraints gives

D, — T4
C, = —=-(,
TAe

TAe

C,

R]Z

- T
R, = ”’—C;i (4.6)
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- The analytic solution V¢ = a(e™t/™ — e=1/72) of a reduced network is easy to

obtain. and the peak voltage 17> __ is given by

-marT

= Td g _ 2
‘mar = ;P— -f((TPe - TDe)(’D‘_ - TA‘_)/TP,)

‘where the normalized amplitude function f ranges between 2/e and 1. and its

equation 1s presented in Appendix B. This model gives the exact solution if the

original circuit itself has only two time constants. Two-time-constant circuits are

‘quite common: the read/write network of the RAM cell shown in Figure 4.5 is an

example. In fact. according to the simulation on the execution unit! of the MIPS-X
processor. 771.5 percent of its dvnamic clusters have two or fewer transistors. Hence.

being able to solve a reduced network without error is an extra bonus of this model.

4.4.3 Limitations of the Model

The charge sharing with a driven path model is plagued by the same problem
as the pure charge-sharing model: it is vulnerable to circuits with low-frequency
zeros that cancel the effect of low-frequency poles. A circuit similar to the one
shown in Figure 4.7 illustrates this deficiency. Assume that a resistor of value 10
connects.node a to the ground. Since the capacitor at node b is insignificantly
small compared to its neighbors and the capacitor at node a is large enough to
be considered as a virtual ground, the resistive-divider between node a and node
c dictates the initial voltage waveform at node b. The whole system is eventually
discharged at approximately the same rate through the driving resistor. As a result,
the amplitude at node b cannot be reasonably modeled with two poles. This failure
can be caught by the model: R; in Equation 4.6 becomes negative. which is not

physically realizable.

1The RAM cell is located in the instruction cache, which is not part of the execution unit.
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" The problem 1s éxpensii’e to fix. Matching higher-order moments is not only
computationally’ demanding. it 1s still vulnerable to the same problem though at
a different level. Fortunately. even though pedagog;icai circuits with multiple low-

frequency zeros are easy to construct. they are very rare in digital designs. In order

to recover gracefully after detecting that the model fails. the definition of R, needs

to be modiﬁed:f
_ . P, = D, N

- Ry = max(0. o

4.5 Summary

Charge sharing can be classified into two kinds: pure charge sharing and charge
sharing with a driven path. In the former kind. a waveform is hard to estimate be-
‘ cause its dominant time constant is infinite. In the latter kind. delay is meaningless
because a node starts and ends at the same level; vet its transient‘wa.veform may
cause a glitch:

Pure charge sharing needs to be modeled by two poles in order to catch the
charge-redistribution portion of a waveform. However. the previous two-pole model
cannot be directly applied because there is no distinguished reference node. The
similaritj-‘ between pure charge sharing and a fully-charged driven case is used as
the basis for the time-domain derivation. Frequency-domain interpretation of the
result is also presented. It is shown that a waveform can be modeled with the sum
of two exponential functions, though one of them degenerates to become a constant.

Charge sharing with a driven path is controlled by two events: sharing charge
between the charging tree and the driving tree, and a driving voltage source. The
amplitude of a voltage spike is determined by high-frequency components of a wave-
form. These components can usually be taken care of by introducing an additional

pole in the model. However, some care must be taken in using the two-pole-one-zero

i
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model because there is a zero at the origin in this case. Although a similar approach
to the one reviewed in Section 2.4.2 can match the area and thev first moment of
a waveform. tvhese two constraints are not enough to uniquely determine a wave-.
form. Fortunately. matching the Elmore’s delay can provide an additional piece of

information. which is then sufficient to specify a unique waveform estimate.







Chapter 5

Charge Sharing in Transistor
Networks

5.1 Overview

Chapter 4 has introduced charge-sharing models for resistor-capacitor networks:
however. the éircuits being modeled are really transistor-capacitor networks (or T'C
networks). The major complication in modeling MOS networks is due to transistors’
nonlinearity. For example. an nMOS transistor pas.ses a low signal more effectively
than a high signal. but the opposite is true for a pMOS transistor. To compen-
sate for this asymmetry, switch-level simulators usually assign different effective
resistances to transistors depending on the signal level being passed|26]. However,
~there is always an underlying uncertainty about how this ad hoc compensation can
change the accuracy of a model. To address this doubt, this chapter attempts to
construct nonlinear charge-sharing models which take transistors’ nonlinearity into
consideration.

Since a step function has been assumed for the gate input of a switching tran-

sistor, all transistors which belong to the same cluster enter the linear region either

71
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» right away or shortly after the input changes.' By assuming a quadratic transistor
model. Horowitz[l?] was able to formulate a péeudoliriear current-voltage relation-
ship for transistors operating in the linear region. This relationship has been used
to deifelop timing models'for TC networks[12]. The pseudolinear transformation is
reviewed in Section 5.2.

Axlthough the pseudolinear transformation does not remove the nonlinearity of
a transistor, it allows the voltage of a node in a T C network to be formulated in a
way similar to that in an RC network. Sections 5.3 and 5.4 rely on this property to

construct charge-sharing models for nondriven and driven TC networks respectively.

5.2 Transistor as a Pseudolinear Device

The current through the drain and source terminals of a MOS'-tr.ansistor 1s not
linearly related to the voltages associated with these terminals. Horowitz[12] noticed
that when a transistor is in the linear region, its drain-source current. based on the
quadratic transistor model. is linearly related to some function g(Vp.Vs) of the
terminal voltages. Moreover. the function is separable with respect to the two
parémeteré 1p and Vs ¢(Vp, V) = f(¥p) — f(Vs). As a result. the drain-source
current and the transformed voltage f(17) of a terminal node are linearly related.
This transformation. unfortunately, does not totally remove the nonlinearity of a
T'C circuit because linear capacitors become nonlinear devices in the transformed
domain. Thus. such transformation is called pseudolinear. |

Using an nMOS transistor as an example, the drain-source current ipg is equal
to

W Vps

ips = UnCosz T ”GS"‘th"'—)‘DS“(l"‘ h)

where all voltages are normalized by the power supply. The function f,(Vp) is equal

fa(VD) — fa(Vs)
Reff

to1—[1-1p/(1 - V,h)]:', and likewise for the function f,(V5s). Ress 1s equal to

i
i
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2L /W itnCox(1 = Vi4)] and. up to the first order. 01_11}" varies with the dimensions

of the transistor. Since R.ss is the proportional constant in the above expression.

it has the semantics of an effective resistance. Due to a threshold drop between

‘the gate and source terminals of a MOS transistor. noninput nodes of a transistor

circuit with exclusively n-type devices have a range between 0 and 1—13;. Assuming
a step gate input. one can see that 1ps of any transistor in such a circuit is always
less than or equal to its corresponding 1gs — 134 thus, all conducting transistors

operate in the linear region.

The pseudolinear current-voltage relationship of a pMOS transistor is symmetric

to that of an nMOS transistor. but the source and drain labelings are reversed. For

~a pMOS transistor. the drain-source current is equal to

- W . Ips.. _ o Fo(V) = £olT5)
1ps = _#pCOIT(‘ Gs — Vin — —é—)‘ ps = —(1 — [Vil) Ry

-2

where f,(1p) = 1= [1—=(1—=1D)/(1—[Vix])]?. and likewise for fp(Vs). The threshold
voltage 13, of a pMOS device is negative. hence, V3] is actually equal to =13, Reys
in this expression is equal to 2L/[W u,C,.(1 — [Vi4|)]. Noninput nodes of a circuit
with exclusively pMOS devices range between |17,| and 1 due to a gate-source
threshold difference. When a step gate input is assumed. Vps > (Vgs — Vi) for all
transistors. thus they all operate in the linear region.

Since pMOS technology can easily be mapped! to nMOS technology, the follow-
ing presentation will be in nMOS only. Furthermore. in order to simplify notations.
all voltages will be normalized by 1 — V34, and symbol U7 will be used to represent

the transformation of a normalized voltage; for instance. Up =1 — (1 — Vp)°.

YThis can be accomplished by replacing each pMOS device by an nMOS device with proper
adjustments in R.s;’s (to compensate for the differences in the hole and electron mobilities and the
magnitudes of threshold voltages) and reversing the polarity of each node (replacing 1" by 1 ~17).
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‘5.3 Nonlinear Pure Charge Sharing

Modeling pure charge-sharing transistor networks consists of two sub-problems: the
determination -of waveform shapes and the approximation of time constants. These

concerns are shared by the linear pure charge-sharing model. hence. insights can be

~gained by looking at the physical basis of that model.

In essence: the linear pure charge-sharing model maps a node in an RC network

"to a node in a two-capacitor-one-resistor network. The output of this model is an

exponential. and the value of its time constant is set such that the areas under the
true output and the model output match. An equivalent technique for a nonlinear
model would be to map a node in a TC network to a node in a two-capacitor-
one-transistor hetwork. Adopting this equivalent technjque‘is'appropriate because,
in spite of the differences between transistors and resistors. a waveform in a pure

charge-sharing MOS network usually has a simple shape and is dominé,t.ed by a

. single time constant.

For TC networks. the area under the true output is, in general. impossible to

find because of transistor’s nonlinear current-voltage relationship. Fortunately. the

- aforementioned nonlinear transformation from V' to U allows a limited application

of superposition. Equation 4.1 can be rewritten for a TC network as

.. dly
Ue—U,=-3 RLCi—2
2 O

where R}, is set by the R.s; of the path instead of the resistance of the path as in

the linear model. The area between U7, and U, in the time domaijn is equal to
[ t-tdt=ry (5.1)
0

The idea is to find [ U, — U; dt and to use it to approximate the time constant

for the [" waveform at node e. Since there is a one-to-one mapping between a U
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“and its corresponding 1~ waveforms. the time constant for the 1" waveform can be

estimated as well.

5.3.1 Shapes of Waveforms

The falling and rising waveforms for nodes in a two-capacitor-one-transistor net work
: e

can be solved explicitly:

R G (for the falling node) (

\¥ tanh(t/7)
{(1=Vy)+Vy tanh(t/7)

Qe
W
—

(for the risihg node)

where 7 = RCy (R is the R.ss of the connecting transistor, and Cp is the capac-
itance of the node which is originally charged highi). Although falling and rising
waveforms of nodes in an arbitrarily complex TC network can have much more
complicated formulas. the functions in Equation 5.2 can roughly depict any falling
or rising node because. to first order, all falling nodes fall at approximately the
same rate and so do rising nodes.

These two waveforms are monotonic. and they approach 1} asymptotically from
the opposite sides. In the l'-domain, where U = 1 — (1 — V)2, the transformations
of these two waveforms are also monotonic, and they approach 'y = 1 — (1 — 17%)?
asymptotically from the opposite sides. Equation 5.2 and its transformation will
be used to approximate the voltage and ["-domain waveforms in any pure charge-

sharing MOS network.

5.3.2 Approximate Time Constant

Even though Equation 5.1 looks very similar to Equation 4.2, the charge-conservation
technique (multiplying both sides of Equation 4.2 by the capacitance C, of node ¢
and summing over corresponding equations from every node) used to separate nodes

¢ from r in Equation 4.2 cannot be applied to Equation 5.1. That is because U is a
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function of V2. hence 3, C. U, is a function of the total energj-’: in the system. Unlike
the total ‘charge, the total energy stored in all capa.ci_t.or.s of a purev cha.rge-shariﬁg
net\{’ork does not conserve. | |

B Fortunately. in the proposed scheme. the t.imevc(ms»fant of a waveform is é.pj)rbi:é
ima.t.ed'b'y its area in the time domain, and there are countless waveforms that have
the same area. Hence. for the purpose of dpproximating a time constant. 1t is_not
necessary to find the exact shape of a waveform, but any W'éx'eform G which has
the same area as ' can be used. In addition, if it is possible to find a par‘ticﬁla‘.r
G function, P. which is linearly related to 1. then cdﬁsérva.tion of charge can be

applied to a set of [ P. — P, dt = 74; equations to decouple nodes € and r. -

In general. P is impossible to define without knowiilg the area under C' but
finding the area under U is the reason P needs to be defined. However, for a
two-¢apacit.or-olle—tra,nsist.of network. its P function, ['*, can be deﬁned for both
the rising and falling nodes because the system can bé solved analytically; see
Equ;:l.t.ion 5.2. In this case. ‘ | |

, FOV(V = Vy) + Up (for V 2 1) .
U = = | (5.3)
ROVO(V =13+ Ty (for V" < 17)

can be obtained by substituting Equation 5.2 to f“,'{o)(U -U- %dV and setting the
latter to zero. It is not surprising that, instead of linear in V', U™ is piecewise linear.
This is because the shapes of the rising and falling waveforms of a two-capacitor-
one-transistor network are quite different. The two portions of. Equation 5.3 are
monotonic and they approach U; asymptotically from the opposite sides just like
the transformations of Equation 5.2. These monotonic and asymptotic properties
‘simplify the problem: the area between the transformation of the rising waveform

and Uy is equal to [5° R(V};)(V — V) dt (similarly for the falling waveform). The
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Figure 5.1: Proportional constants as functions of the normalized final voltage.

proportional constants of Equation 5.3

AA31-1y) | 1-1j

FV) = =m0 T pa o)

and
Sy 21 =15)? \¥i P < : ,
R(Vy) = - I17 # 0.5: R(0.5) = 1.25)
(17) oo, mpa-vy O Ty # 0.5: R(0.5) = 1.25)

are functions of the final voltage only. and they are plotted in Figure 5.1.

Although 1" is nothing more than the P function of the trivial case (a two-
capacitor-one-transistor network). it has been decided previously that waveforms
in any network usually resemble those in a trivial case. Hence. Equation 5.3 can,
and will, be used to approximate the P function of any node in any network. Since

[P = Podt = [T, ~ U, dt = 4.
/°° U = U7 dt » 7ay. (5.4)
A |

After Equation 5.4 is collected for every node. conservation of charge can be
applied to the sum of the weighted CU" products. This technique is fundamentally

the same as summing over the unweighted C1" products in constructing the linear
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pure charge-sharing model. The t.rick in weighting CT~ 1)rodu¢ts_ is to multiply the
cU- product of a rising node by F(17%) and the CU* producf 6f a falling node by
R(17%) such that bmh products are proportional to F(U)R(T;)(T —1%). The sum

of the weighted productq 1s

/ F(V)) Zq U —U)+ ROV ZC‘L U —U") dt
ZCkIA'+R ZCI\"V
When Equation 5.3 is substituted into the above equation. the left-hand side can

bes1mphﬁedto(C'L (17 +CHR ) fos lf——l dz‘vshereCL—Zka and C'H—
Zka. Thus.

/x Uy - U dt e FOO T Citap + RO T, Ciray.
’ CLF(Vy) + CrR(VY)

and it provides the necessary information to do decoupling: - JooUs = Uy dt for any
node € can be computed by combining f0°° U;—U; dt with [ Uy — Uy dt.

The estimated waveform 1°= for node ¢ has the shape given by Equation 5.2. and

its time constanit. determined by Joo V7 = V4 dt through combining [ U — Uy dt

with Equation 5.3. is as follows:

(Crraz=3, Chrar )+ ?‘:':(CHT,,T_Zk Clrar) .
;= =152 (for falling nodes)
‘ R \, (ch ’AT"CL Ta7) (ZkC',’(".'A:—CH?A:) o
T 0-V7)Cr (for rising nodes)

Just like its counterpart in the linear model. this time constaﬁt 1s independent of
the reference node. Since the time constants depend on the ratio between F(V7)
and R(V7). this ratio is plottéd in Figure 5.2. |

This nonlinear model provides accurate estimates for networks with a single
dominant time constant; for circuits with only two capacitors. the estimate is exé.ct.
On the other hand. the model fails the same class of circuits that causes problems

to the linear model. The reason is that the nonlinear model also implicitly assumes
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Figure 5.2: The ratio between the proportional constants as a function of the nor-
malized final voltage. ) '

that voltage waveforms are monotonic. Hence. it can occasionally give poor. but
conservative. estimates to nonmonotonic waveforms. It is eveh more difficult to
improve the nonlinear model than to improve the linear model because the concept
of poles and zeros cannot be applied to nonlinear devices. In order to safeguard the
consequence of a breakdown in the model, the aforementioned time constant can
be modified as max(0.1.).

The nonlinear model has been applied to the barrel shifter shown in Figure 4.2.
and the result is compared with SPICE simulation in Figure 5.3. The excellent
match is because the barrel shifter really has only one dominant time constant,

even though the circuit has three capacitors.

5.4 Nonlinear Charge Sharing with a Driven Path

This section introduces a charge-sharing model for driven T'C networks. The major

concern in modeling TC networks is the nonlinearity of MOS devices, which usually
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Figure 5.3: The nonlmear model versus SPIC E 51mulat10n for node N of the barrel
sluft er shown in Figure 4.2.° :

has a decisive effect on the shape of a waveform. For example, neither the rising
nor the falling waveform in a TC network is ,expone_nt_ia‘l in nature[12] as-opposed
to those in an RC network. Furthermore. the general shapes of waveforms in a pure
- charge-sharing T'C network (described in Equation 5.2) are also quite different from

those in an RC network.

The simplest driven T'C network with a charge-sharing problem is a two-capacitor-
two-transistor circuit shbwn in Figure 5.4, where C, is initiallj? charged to a different
polarity from the voltage source V' (1" can be either 0 or 1_), and the transistor 7, is
being switched on. Even in such a simple case. the voltage spike at node 1 can have
quite different shapes depending on the type of the MOS devices and the voltage
level of the driver. This circuit configuration deserves special attention because it
is statistically the most common charge-sharing-with-a-driven-path scenario (77.5

percent of the dynamic clusters in MIPS-X processor’s execution unit have two or

fewer transistors).
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Figure 5.4: The simplest driven TC network that has a charge-sharing problem.

' 5.4.1 The Trivial Case

The trivial configuration (the tWo—capa.cit.or-t\\7o-t.fansist~or configuration) is simplé
enough that it can be anal};zed directly. Unfortunately, as far as the author knows.
there i1s no closed-form solution for its output waveforms. Heﬁce. they must be
solved numerically. | _ |

Before a.tt-erhpting to solve the output waveforms. it 1s usefﬁl to put the circuits
in a normal form. With reference to Figure 5.4, assume. without loss of generality.
that the voltage source V is at the ground level. Let Ry and R; be the R.ss's of
Ty and T; respectively, and let a = R;/(Ry + R;) and 8 = C1/(Cy + C3) such that
both a and 3 lie between 0 and 1. A cireuit parameterized by a and /4 is shown in
Figure 5.5. and it is the normal form of the circuit shown in Figure 5.4. The proof
in Appendix C shows that voltage 1, at node N\, in Figure 5.5 and voltage 1, at

node € in Figure 5.4 are related as follows:
V. (t') = V.(RCY)

where R = R; + R;. C = C; + C,, and t’ is dimensionless.

Since voltage waveforms at corresponding nodes of any two networks with the
same normal form are different only by a stretching factor in time, voltage spikes in
two such circuits will have the same amplitude. This property reduces the number

of variables in a two-capacitor-two-transistor network from four to two. and it allows




82 CHAPTER 5 CHARGESHARING IN TRANSISTOR NETWORKS

- e
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P I 1

Figure 5.5: A normalized network.

a simulator fQ use a table. indexed by a and 3. to look ui) the amplitude of a voltage:
spike. |

The nonlinear differential equations associa.t.edv with the circuit shown in Fig-
ure 5.5 can be solved numerically using schemes such as the fourth order Runge-
Kutta method[13]. Figure 5.6 plots the maximum \roitage fluctuation. a:s a function
of a and 8. of the voltagé spike at node N;. The color code used in the piot 1s ex-
pié.ined in Figure 5.7. Jags on the curves in F iguré 5.6 are due to the low resoluti‘on
of the numerical data set.

When comparing the voltage spike in an nMOS two-ca.pa.citor—two-transisfor
network driven to the groﬁnd to that in a correspondihg RC network. which is
shown in Figure 5.8. one can see that the former hé.sba lower amplitude. The
differences in the two plots can be explained qualitatively by looking at nMOS
transistor’s currént—voltage relationship. When a step gate input is assumed, the
drain-source current (ipg) and the drain-source voltage (Vps) of an nMOS transistor
are related as shown in Figure 5.9. The plot shows that ips decreases with a
higher Vs (source voltage) or a lower Vpg, therefore, an nMOS transistor is more
effective in discharging a capacitor than in charging one. For example. in Figure 5.5,
capacitor C; (labeled with 3) is charged through transistor T}, (labeled with 1 — o)
and discharged through transistor T; (labeled with a). When the voltage of C;
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Figure 5.6: The maximum voltage fluctuation of a spike in a normalized nMQOS
network driven to the ground.
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Figure 5.7: Color code for voltage-fluctuation plots.
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Figure 5.8: The maximum voltage fluctuation of a spike in a normalized RC network

(driven to either V'dd or the ground).

increases. the current conductivity of T; increases while that of T, decreases. As a
result. C) cannot be charged to as high a voltage as that in the corresponding RC
network. |

In contrast. if a two-capacitor-two-transistor nMOS network is driven by Vdd,
then the amplitude of its véltage spike is expected to be higher than that of a
corresponding RC network. This conjecture is verified by the numerical result
shown in Figure 5.10. |

Although Figures 5.6 and 5.10 are derived from the nMOS technology, they can
also be applied to pMOS networks. Thus, only one set of plots is required for both
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Figure 5.9: The drain-source current (ipg) of an anMOS transistor as a function of
its drain-source voltage (1pg) for different source voltages (1%).

the nMOS and pMOS technologies.

5.4.2 Nontr-ivial Cases

When a driven network consists of more. than two capacitors and two transistors,
its precise charge-sharing outcome is too complicated to find wibt.hout a circuit-level
simulator. However, Section 4.4 has shown that it is possible to model a nontrivial
RC network by mapping it to a two-capacitor-two-resistor network. The output of
the model can closely approximate the real output because most circuits” spikes are
dominated by a pair of time constants. Since the two-time-constant characteristic
holds for transistor networks as well, it is reasonable to apply the modeling-by-
mapping strategy here.

| For the linear model described in Section 4.4, the mapping is done through
matching the first-order and the second-order geometric characteristics of a voltage
waveform (namely the area and the first moment ). For a nonlinear model. it is more

convenient to do the mapping in the transformed domain because the nonlinear -



86 ' CHAPTER 5. CHARGE SHARING IN TRANSISTOR NETWORKS

10

0.9 1

Beta(B)

- 0.8 1

0.7

06 4

0.5 1

041 ¢

0.3:"

0.2 {

0.14

0.0 A=
00 01 02 03 04 05 06 07 08 09 10

Alpha(o)

Figure 5.10: The maximum voltage fluctuation of a spike in a normalized nMOS
network driven to Vdd.
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‘current-voltage equations can be written in a pseudolinear form. For examiple,

given a TC tree driven to the ground. the transformed waveform [, at any node €

‘can be written as

dly

l"e:—» R Cr—
_ Xk: ke Gy

Where Ry is set by the R,ss of the pa:th to the ground shared by both nodes k and
e. Integrating both sides of the above equality, one can see that the area under U.

- in the time domain is equal to 3_; R Cr.

Unfortunately, without having the exact shape of U, it is impossible to derive

- Jg° Ve dt from the transformed-domain area. As a result. the first moment of U

/O“’fcf; dt =}ZI;R,¢6C,¢ /:Vk dt

cannot be determined. Thus. the linear modeling technique cannot be directly ap-
plied to transistor networks. Yet its result still provides useful insights to the map-
ping process because the technique’s dependency on the second-order information
only supplements but not invalidates its dependency on the first-order information.
As a matter of fact. the first-order information alone makes some major modeling
decisions for the linear model. This is best illustrated by constructing a simpler
linear model using exclusively first-order intuitions and comparing its result with
the more elaborate linear model described in Section 4.4. For node ¢ of an RC
network shown in Figure 5.11, one can construct a charge-sharing model as follows.
To the zeroth order, the charging tree is just a large capacitor whose capacitance
is set by the sum of all the charging-tree capacitors. Since charging-tree capacitors
discharge through Rcc. (which is the resistance of the path between the ground and
the node connecting the charging tree and the driving tree), R.. needs to be included
in the first-order model to connect the charged capacitor to the ground. In order to
customize the model for node ¢, the waveform characteristics at node € have to be

emphasized. There is only one point on R, of the first-order model whose voltage
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Driving Tree ' ' Charging Tree

Figure 5.11: A modeling example.

E

Figure 5.12: A charge-sharing model based on first-order intuitions.

waveform has the same time-domain area as that of node e. This point is located
at R away from the ground because the area under Ve 1s equal to 3 x R C}. and
since all C} s are in the charging tree. Ry ’s are all equal to R,. Let this point be
labeled as node.E; see Figﬁre 5.12.

Node E needs some capacitance to catch the collective effect of the driving-tree
capacitors being modeled. This capacitance can be approximated. to the first order,
by matching the Elmore’s délays at nédes ¢ and E. In this context, the Elmore’s
dela.}" is the time-domain area under a waveform if all capacitors are initially charged
high. In order to match the Elmore’s delay Y_; Ri.Cx at node ¢. the ca.pacita,nce‘ at
node E has to be equal to (Z,; Ri.Cl)/R...

Up to this point. a two-capacitor-two-resistor model has been constructed. This
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model is obviously missing something because the resistors in the original charging
tree hé.ve not been incorporated. The volt’a‘.ge spike at nodeb‘e can be overestimated
if all the charging-tree capacitors are modeled as being lumped at Vnode ¢ when they
are actually not. This shortcoming can be improved by inserting ‘a resistive element
as shown in Figufe 5.12. The size of this resistor can be determinéd by looking at the
func’gionalitiés of the charging—treev capacitors. As far as chargé sharing is c.oncerned,
charging-tree capacitors are charge suppiiers. Thus. if they are modeled as one ca-

pacitor. then this capacitor should share some common charge-supplying character-

istics with the original charging tree. By looking at the total charge Q@ = ¥, CF1%

in the éharging tree as a function of time. one can define charge—suppl}'ing charac-
t»eriStics as geometr‘ic waveform characteristics of the charge-supplying waveform.
This definition is analogous to using the \foltage-.u;a.\feform characteristics to define
the corresponding node’s voltage characteristics.

© The first-order charge-supplying characteristic is the time-domain area under the
charge‘supplying waveform: a definition similar to that of the first-order voltage-
waveform characteristic. Mathematically, the area under a charge-supplyving wave-

form 1s equal to
/°° Q dt = /“ STCMV dt = R, S CH+ Y CHS R CH)
0 O % k k J

where RS, is the resistance of the path to node ¢ shared by both nodes jand k. In

order to match this area. a resistor of size

Lk CHE; R CH)
(ZxCR)?

has to be inserted into the first-order model as shown in Figure 5.12.

This first-order model is actually very similar to the elaborate model presented
in Section 4.4. The latter model is dissected in Appendix D. Comparing the two

models, one can see that they are only differed by one component — a resistor. This
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RieCLURu~Ree) | o o oo : .
resistor (R, = Ls }; D CL,, ) 1s1n qure D.1 but it is absent from Figure 5.12.
C% k

The 1nterpretat10n of R,, 1s nonintuitive because 1ts value is determined by the sum
of Asecond—(‘)rder resistive terms. | . | |

In order to evaluate the differences between the ﬁrst-ofder .and the elaborate

| vmodels a detailed analysis of how the amphtude of a voltage spike varies with Ry,

is carried out In Appendx\ E. The conclusmn is that R,, plavs a relatn'el\ minor
role in determining the amphtude. Thus. the first-order model is quite sufficient in
modeiing charge sharing in driven RC networks. ‘ ‘

A similar first-order model can be construcfed for transiﬁor networks. It is
easlest to‘do this in the 'tran‘sfor'med domain in which frénsistors are characterized
by R.ss's and voltages are characterized by ["’s. Using node ¢ of the T'C network
shown in Figure 3.11 as an example. one can argue Itha.t. to the first Cfder, cha‘rging—
tree capacitors act like one device which diécharges through R, to the ground. In
order to match the said node’s ['-waveform area and the Elmore’s delay. the first-
order model should have a capacitor equal to (3, R C{)/ R, locating at R, ia.way
from the ground just like its linear counterpart: see Figure 5.12.

Even though the capacitors of a T'C network’s charging tree still act as charge
suppliers in the charge-sharing context. their charge-supplving characteristics are
not as easy to find as that in an RC network. For instance, there is not sufficient
information to find the first-order charge-supp‘lying characteristic ( [y~ @ dt) because
each node k is characterized by U} instead of V.. However, U; and V) have a simple
relationship, and all waveforms in the charging tree usually have approximately the
same shape. Thus. by matching [;* Ty C2Ui dt, one can argue that [ Q dt is also

closely matched. As a result. the transistors in the charging tree can be modeled as

2L CrY, R CH)
one transistor with R.s; = (chgh 7k

In conclusion, first-order charge-sharing models for RC and TC networks have

the same set of parameters. As a matter of fact, the charge-sharing model for driven
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TC networks may as well use the set of parameters determined for R C networks in

Section 4.4. This is because the simulation results summarized in Appendix F show

that Ry,. which is the only difference between the two sets of parameters. does not

play an important role in the nonlinear modeling either.
The first-order and the elaborate models are applied to the read/write network
of the RAM cell shown in Figure 4.4. Since the cluster of interest has only one

noninput node in its driving tree, R,, of the elaborate model is equal to zero.

Consequently. the two models are identical, and the result from either model can

perfectly match SPICE's prediction (at level 1) of the real output.

5.5 Summary

Charge-sharing problems in MOS designs are complicated by transistors’ nonlinear-
ity. Since the conductivity of a transistor varies with the signal level being passed,
1t 1s not alway's reasonable to statically assign a set of resistances to a transistor. On
the other hand, the voltage-current equations of transistor networks are in general
somewhat intricate to formulate. Fortunately, if transistors in the same cluster are
of the same type and the switching transistor has a step gate input. then these
transistors operate exclusively in their linear regions.

Assuming a quadratic transistor model, Horowitz noticed that the drain-source
current of a transistor operating in the linear region is linearly related to some
nonlinear function of the transistor’s terminal voltages. Although this observation
does not change the éssence of the problem, it helps to formulate the voltage of a
TC circuit in a fashion similar to that of an RC circuit.

This chapter presents a pure charge-sharing model for TC networks. This model
includes two functions to describe the rising and falling waveforms of a transistor

network. The time constant of the model is determined by the network’s circuit
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elements through matching waveform characteristics.

Charge-shafing problems in driven TC networks are also discussed. The: con-
jecture is that voltage spikes in complicated T'C' networks 'sha.pe,manf ‘waveform
characteristics with those in a two-capacitor-two-transistor nen&brk, Thus. a first-
order approximation can be made to "map” a node from a complex network to
a two-capacitor-two-transistor case. Even though two-capacitor-two-transistor net-
works do n»ot‘ have closed-form solutions. numerical results can be used to determine

their amplitudes.




’Chapter 6

Implementation of a Switch-Level

Simulator

6.1 Overview

Inv previous chapters. ways to improve switch-level models have been presented.
This chapter describes how to efficiently implément these models.

Simulators have to handle more than the idea loop-free single-driver setting
assumed throughout most of Chapters 2, 4. and 5. Terman|26] has proposed a
simple scheme to randomly break a nontree network to a loop-free network. Even
though his scheme is ad hoc, it is usually adequate for simulating MOS designs
because nontree networks are so rare. On the other hand, networks with multiple
drivers seem to be a more common and more important problem. For example,
when more than one pull-down of a NOR gate is conducting simultaneously, the
charge on the output capacitor can be drained through multiple paths. It is not
always possible to straightforwardly merge multiple driving paths because there can
be capacitors on the paths. Fortunately, multiple-driver problem is in principle very

similar to the single-driver problem, and Section 6.2 suggests a simple method to
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transform the former prdblém to a more familiar single-driver form.

Section 6.3 descn’bes the a“ctua,l implementatioh of nRSIM — a new switch-level
simulator which incorporates all the models presented in this thesis. It shows that
in spite of the complexity of the models. the implementation only requires simple

data structures and little computation. -

62 Modeling Multiple Drivers |

The timing and charge-sharing models presented in this thesis are based on finding
“the area and the first moment of an output waveform. The most widely ﬁsed
derivation assumes a single driving source. Lin[13] has pfopoéed a multiple-driver
derivation, which is quite general but rather complicated. This section reviews Lin’s
work and introduces another solution that is less general but much simpler.

Lin's LRD (Load ReDistribution) algorithm is based on the block Gauss-Sei‘del
method for solving a system of linear -equations. The aigorithm can be applied
to both treé and nontree networks. The basic idea behind the LRD algorithm
ié to carefully convert a general network to a set of single-driver tree networks
such that nodes in the latter set of networks are indistinguishable. as far as their
delays are concerned, from the corresponding nodes of the original network. The
LRD algorithm consists of two steps. In the first step, the general network is
topologically decomposed into a set of independent subnetworks. Each subnetwork
is a tree and has one and only one voltage source. This step is referred to as tree
decomposition. The decompoéition process involves splitting nodes that cause loops

* or that connect multiple drivers together. Split nodes are referred to as secondary
nodes, while the original nodes are called primary nodes. The second step det-ermiries
how the capacitors associated with the split nodes are split, and it is known as load

redistribution. Load redistribution is a relaxation process which distributes the
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“capacitance at a primary node to the corresponding secondary nodes such that the

delays at all secondary nodes are eventually equal to one another. During each
relaxation step. Elmore’s delays are computed for all secondary nodes. The time
complexity of load redistribution is proportional to the product between the number
of relaxation steps and the number of secondary nodes. The number of relaxation
steps 1s controlled by the required accuracy. Since each split tree has its own driver.
all drivers in the original network must have the same voltage: otherwise. a group
of secoﬁda.r}' nodes split from the same primary node can end up with different
voltages.

Even though the LRD algorithm is capable of solving nontree as well as tree
networks. most networks found in MOS designs are free of loops. It turns out that
for multiple-driver tree networks, there is a scheme much simpler than the LRD
algorithm to calculate tixhing and charge sharing. The following sections present

this scheme.

6.2.1 Current Distribution in a Resistor Tree

For a single-driver resistor tree, the voltage induced at a node due to a current
source at another node is a function of the resistance of their shared path towards
the driver. Unfortunately, the “shared path towards the driver” is topologically ill-
defined when there is more than one driver. However, there is also a nontopological
way of looking at path sharing. Assume, without loss of generality, that a loop-free
network has only one driver: the ground. The voltage at any node € is equal to the
product between the current through that node and the resistance between that
node and the ground. If there is no current passing through node ¢, then the node
has the same voltage as its neighbors. For example, if a current source ¢ at node k
is farther away from the ground than node e as shown in Figure 6.1 (a). then all

its current passes through node e. Hence, the voltage V. at node ¢ is equal to R..:.



@ | . ® . ©

Figure 6.1: Voltage induced at node ¢ due to a current source at different positions

‘relative to the ground.

In contrast. if the current source is closer to the ground than node ¢ as depicted
in Figure 6.1 (b). then 1; is equal to the voltage at node k because there is no
current between nodes ¢ and k. In the third variation. when nodes ¢ and k appear

on different branches as shown in Figure 6.1 (c). voltages at nodes ¢ and c are equal.

~and they are determined by the current discharging through resistor R,..

The voltage-current relationship can be generalized to circuits with multiple
voltage sources. Assume that a resistor tree has several ground drivers and has
a current source at node k. The current through each resistor can be solved by

Kirchhoff's current law. and the voltage at any node is equal to the sum of current-

‘resistance products along any path from that node to the ground.

Computing current through each resistor can be tedious: fortunately, the fol-

lowing transformation provides a systematic way to do that. With reference to the

systems shown in Figure 6.2, the transformation states that the current source 7 at

node Y can be replaced by a current source that has

it T
" R+ R

‘at node X without changing the voltage 1’x at node X.

It 1s worth noting that the transformation says nothing about the voltage at node
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R; I
—ffp—
AW
R; Ry
AW AW

System B

Figure 6.2: By properly adjusting its value, it is possible to move current source 7
from node Y to node X without changing the voltage at node X.

Y. As a matter of fact, the transformation is not transparent to node Y. Hence.
systems A and B are not entirely equivalent, and system A cannot be regenerated

from system B through the same transformation.

This transformation can be generalized to handle more complex circuits. For
example. if R; is replaced by n resistors R;,, Rj,. .... R;, in parallel. then as Iohg
as R;, || R;, || ... || R;, = R;, the replacement is transparent to both nodes X
and Y. Similarly, Ry can be replaced by m resistors R;,. Ry,, ..., Ry, in parallel
where Ry, || R, || - .. H Ry, = Ri. After replacing these two resistors, the systems
in Figure 6.2 look like those in Figure 6.3. According to the transformation, VY
of system A and 1y of system B are equal in Figure 6.3. hence 7;, = 7.2]; 1, =

29, .... 11, = 13,. In other words, the transformation is not only transparent to

node X but also to the network which is downstream from node X. In this example,
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downstream refers to the network which is to the left of node X (vice versa for

upstream). Since the transformation only needs the knowledge of the ‘upstream

network. it is independent of the configuration of the downstream network.

The above transformation provides a sysfematic way to compute the voltage
induced at one node (the destination node) due to a current source at another
node (the source node): by repeatedly applring the transformation to move the
current source from the source node to the destination node along the shortest path
between the two nodes! and multiplying the resultant current by the resiétance
between the destination node and the ground. If there is more than one current

source in the system. then the operation can be repeated for each current source

one at a time according to superposition theorem. In the actual implementation

of this algorithm. current sources which share their transformation paths can share

“their transformation information as well. This technique and its complexity will be

discussed later. .

6.2.2 Application of Current Distribution to: RC Networks

Assume, without loss of generality. that a loop-free resistor network has multiple
ground drivers. Also assume that there is a capacitor Cy at node & which is charged
high initially. The current 7, coming out of the capacitor sets the voltage waveform
Ve at any node € in the network. The relationship between 1, and tx must be
linear. according to Ohm’s la._w, and can be written as V, = Ry.ix. The proportional
constant Ry, can be determined using the above transformation.

To apply the transformation. the capacitor Cy has to be replaced by an inde-

pendent current source with 1 = =C k%“. It has been shown that an independent

1t is important to do transformations along the shortest path such that the destination node is
always downstream from the source node.
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Figure 6.3: Systems generalized from those in Figure 6.2.




by an adjustment factor. 4y-_y. where
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Subnet A _ -~ SubnetB

Figure 6.4: A transformation example.

current source can be transformed and moved from the source node to the desti-

nation node without disturbing the voltage at the destination node. Let ¢ be the
destination node in Figure 6.4. and let X and Y be two nodes on the path between
nodes k and ¢. In order to preserve the voltage at node ¢ while moving a current

source from node Y to node X. the value of the current source has to be adjusted

Thévenin resistance at node Y contributed by subnet B

Ay_y = (6.1)

R + Thévenin resistance at node Y contributed by subnet B’

When the current source is finally moved to node €. the product of all the adjustment

factors (I];-—.._. 4;) together with the effective resistance between node ¢ and the

ground (R, ) set the proportional constant:

Ri.=R. J] 4 (6.2)

I=k—eme

The method can be extended to networks with multiple capacitors using super-
position — each capacitor can be thought of as an independent current source with
the same current characteristic as the capacitor. Hence, the voltage at node ¢ is

equal to

' . ) dvy

V.= Riiy = —ZRkeCk'd_'-
PO ! t
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As a matter of fact. the abo;»-'e derivation can be applied to TC networks as
well. According to Section 5.2, transistors are linear devices in the pseudolinear
transformed domain. Even though capé.ciyt.ors become nonlinear in the new domain.
‘they can still be treated as independent current sources. Thus. the linear derivation

1s still valid. and _
av,

U= -S R.CE
; k k dt

where Ry, is set by R.ss’s instead of resistances.

6.2.3 Multiple-Capacitor Multiple-Driver Example

This section presents a step-by-step execution of the above algorithm on an example.
Through this example. the complexity of the algorithm can be better understood.

Assume that all capacitors in Figure 6.5 are charged high initially. In order to
compute the Elmore’s delay at node €. all capacitors have to be transformed and
moved to node ¢ The Elmore’s delay at node €. according to the multiple-driver

Ry, definition given by Equation 6.2, is

,-De=z;zkfck=aez[ck I .4]}.
k k

jmke—ei—e

The expression shows that there are actually two ways to look at the delay compu-
tation. One way is to find the effective resistances (Rj.'s) of the common paths to
all drivers shared by all capacitors and the node of interest (node €), and the other
way is to find the “effective capacitance™ (3, [Ck | J P .4j]) seen at the node
of interest. The later approach is easier to implement. and it will be followed from
now on.

Since both C; and C, are on the path between nodes a and €. these two capacitors
can share some common transformation information. As a matter of fact, the circuit

can be partitioned into three subcircuits as shown such that C; and C, are upstream
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Subcircuit #1

{ Subcircuit #3

Subcircuit #2

F ig‘ure 6.5: A multiple-capacitdr multiple-driver example.

from node € in one direction while Cs; and Cs are upstream from node ¢ in two other
directions.
Adjustment factor required to move a current source from node ¢ to node b is

‘equal to 4,y = E%ﬁ?‘ ‘Similarly. 4, = -}ﬁﬁ;%. Consequently. for subcircuit

#1, the effective capacitance is equal to (Cy.4,—p + C3)Ap—.. This information is
not only useful for node ¢. but it can also be used to compute the time constants
for nodes ¢ and d.

Subecircuit #2> can be handled the‘ same way as subcircuit #1. Subcircuit #3
does not hé\'e a driver. hence, its effective resistance to the ground is equal to
infinite. As a result. the adjustment fa.ct(?f Ay 1s equal to 1. Thus. Cs éan be
moved to node e without any adjustmenf. |

‘While computing the adjustment factors, the effective resistance of each path to
the ground ié also gathered as a b};producf (for example,_Rl + Ry + R3 of subcircuit
#1 a,hd R4+ Rs of subcircuit #2). This information can then be used to compute
R,, which is equal to (R, + Ry + Ry) || (Rs + Rs). |

This example éhows that it is straightforward to collect information from a

multiple-capacitor multiple-driver setting. and the information collected for one
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node can also be used by other nodes.

6.3 Implementation Algorithm

This section shows that all models igtroduced in this thesis can be implemented
with a.lgorithzhs that are direct extensions of those uséd in the original RSIM. The
new implementation is called nRSIM. which adopts RSIM’s event-driven skeleton
and user interface in order to avoid duplica.t.ing"l'erman's effort.

When RSIM starts up. it reads in a circuit and a set of simulation vectors.
If these vectors change the logical state of a node. then all transistors with gates
connected to this node change their conductivities. As a result. the source and
drain terminals of these transistors need to be reevaluated. RSIM and nR.SII\'f
are different in their evaluation algorithms. and the implementation of nRSIM’s
evaluation algorithm is the focus of this section. If the evaluation results in new
changes. then the new changes are scheduled. The iteration terminates when the
network is stablized or a prespecified simulation time limit is reached.

The smallest unit that nRSIM does its analysis i1s an electrically connected
cluster of transistors. The analysis consists of two parts: the evaluation of final value
as described in Chapter 3 and the scheduling of events as described in Chapters 2,
4, and 5. Since the implementation algorithm for a nondri{ren cluster is very similar

to that for a driven cluster. only the latter will be discussed.

6.3.1 Evaluation of Final Value

The algorithm shown in Figure 6.6 computes the final value of a dniven cluster.
It calls the function final_value, which is shown in Figure 6.7. on each and every

node of the cluster. Final.value implements the improved resistor-divider model
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for each node n in cluster ¢ {
compute n's new logical state by calling final_value(n):
reset VISITED flags for all nodes;
if n does not have a definite path { ‘
compute n's state from its charge information:
if n's driving result # 7’s charging result
n's new logical state i1s X;
} . .
if a voltage spike is possible at n
0. set n's SPIKE flag:
1}

LRSI 8 o

=0 o

* Figure 6.6: Algorithm to compute the final value of a driven cluster.
described in Section 3.5. It returns a data structure of the following form:
{fypé. R(fZ,erh .Rp,. RD;,} ‘

v?here type is either the definite or the indefinite tvpe as defined in Section 3.5.
and Ry,. Ry,. Rp, .. and Rp, are the corresponding parameters of the definite or
indefinite block.

Function sefies-op in step 12 of Figure 6.7 implements the series operation as
deﬁnéd in Equétion 3.1. Function parallel_op in step 13 impleménts the parallel
‘operation as defined in Equations 3.2, 3.3, and 3.4 depending on the types of its
operands. The VISITED flag in steps 9 and 11 forces the network traversal to
expand outward from the starting node. hence, it can break resistor loops[26].

If a node’s type is indefinite. then the node may not have a driven path. As a
- result, its charge informa.tioﬁ has to be taken into account (sf.ep 5 of Figure 6.6).
Terman suggested an algorithm to compute the maximum and the minimum volt-
ages from the charge stored in the cluster’s capacitors. In order to find the maximum
voltage due to charge sharing for node n, his algorithm assumes that all X nodes

are charged high. and collects the total charge (C_H,,.;) in the cluster. Then it
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1. final.value(n)

2. { :

3. if n is \'dd »

4. this «—— {definite. 0. 0. oc. oc}:

S5. else if n 1s ground

6. this «+— {definite. oc, oc. 0, 0}:

7. else { o ,

8. this «—— {indefinite. oc. oc, oc, =< }:

9. mark n as VISITED: :
10. ~ for each non-OFF transistor t with source connected to n
11. if drain is not marked as VISITED {

12. . other «— series.op(final_value(drain). t):
13. this «— parallel_op(this. other): .

14. }

15. } .

16. return(this);

17. }

Figure 6.7: Function to implement the improved resistor-divider model.

collects the total capacitance (C.L,,;,) from all capacitors that are in low state and

that are reachable from node n through ON transistors. The ratio

. C—Hma.;r
C—Hma:r + C—Lmin

determines the maximum voltage at node n due to charge sharing. Terman's al-
gorithm to compute the minimum voltage due to charge sharing uses the same
principle.

If the charge-sharing result of an indefinite node is different from that computed
by the improved resistor-divider model, then the node’s new state is X (step 7 of
~ Figure 6.6).

If node n starts and ends at the same state and there are capacitors. in the same
cluster, which are charged to a different polarity, then there is a chance that node

n may have a voltage spike. In this case. node n needs a spike analysis (step 10 of
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1. for each state s in [low. high, X] {

2. if none of the nodes in cluster ¢ has new state = s

3. continue: /* Skip to the next iteration. */

4. for each node n.in ¢ { ' »

5. compute n’s time constants by calling compute_tau(n: s):

6. reset VISITED flags for all nodes: ' '

7. if n’s present state # n’s new state

8. schedule n’s driven event:

9. b :

10. for each node n in ¢ that has (new state = s and SPIKE flag set) {

11. compute n's 7p,: ' S
12 compute the amplitude of n’s spike from 74 ..7p, . and 7p,:

13. if n has a voltage spike

14. schedule n’s spike event:
15. reset n's SPIKE flag:

6.}

17. }
Figure 6.8: Algorithm to schedule events for a driven clusfer. _

Figure 6.6).

6.3.2 Schedule of Events

The algorithm shown in Figure 6.8 schedules events according to the final states
.computed previously. Due to X transistors or unusual situations. there is a slim
chance that nodes in the same cluster can end up with different final states. Thus,
the algorithm will iterate on the three possible final states (step 1 of Figure 6.8).
Assume that some of the nodes in cluster c are driven to sfa.te s. The algorithm
calls compﬁte-ta.u; which is shown in Figure 6.9, to compute a set of time constants
for each and every node of the cluster. Comﬁute_tau takes the node (n) and its
final state (s) as parameters, and it returns a data structure which can be used to

comput.é T4, and 7p, as defined in Chapters 4 and 5. Time-constant computation
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is complicated by X transistors. Whjch can create moré than one electrical configu-
ration from each cluster. In order to be conservative ih scheduling, the worst‘ case
timing scenario has to be identified. For example, if a node is driven to either Vdd
or the ground. then the worst case scenario is that the node has the longest delay
such that a potential critical path can be discovered. In contrast, if the node is
driven to X. then the worst case sceqarib 1s for that node to change as soon as
possible beqaﬁse.X's are undesirable in simulation.

Three re‘-s_i"st-an'ces.2 V‘Rmbin. Ryom- and R, .- are.collect‘ed for each node by com-
pute_tau. They are the effective resistances between the node and the drivers in
different electrical configurations. and they are used for different purposes. Ry is
used to compute the delay for nodes that are driven to X. Since X is an intermediate
state. all voltage sources are considered as drivers. Hence. R,,;, is the resistance
to all sources through non-OFF transistors (i.e. all X transistors are considered as
conducting). On the other hand. R, is used to compute the delay for nodes that
are driven to either Vdd or the ground. Assume that node n is driven to the ground.
then R,,,, is the resistance from node n to the gréﬁnd through ON transistors (i.e.
all X transistors are considered as nonconducting). In case there are Vdd nodes
in n's cluster (for instance. if n is the output of an nMOS inverter driving low).
then the Vdd nodes are considered as open circuits because they play minor roles
compared to the ground (vice versa if n is driven to Vdd). In this example. the
ground is called the dominant driver of node n while Vdd .is called the secondary
driver.

Indiscriminately tﬁming ON and OFF X transistors yields the minimum and
the maximum resistances to the driving sources respectively. However, in order

to conservatively compute the effective capacitances for time constants. a third

?In this algorithm. “resistance” refers to either the resistance of RC networks or R, 71 of TC
networks.
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il

Tro o

comput.e_tau(,n._ &)
{ :
if n is an input node {
if s = X or n's state = s
this.R «— {0. 0. 0};
else C
this.R — {0. oc. oc}:
this.C,q; «— {0, 0}:
} :

else {
this. R «— {>c. oc. oc};
if n's state # s
this.C,g;. —— {cap(n). cap(n)}:
else - :
this.Cyg —— {0. cap(n)}:
mark n as VISITED:
for each non-OFF transistor t with source connected to n
if drain is not marked as VISITED {
other «— transmit(drain. compute_tau(drain. s). t):
this.R «— parallel(this.R. other.R):
this.Chg; «— this.Cyq; + other.Cyugy;;
} .
}
return(this);

}

Figure 6.9: Function to compute the delay time constants.
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variation of handling X transistors ancl‘secondary drivers is required to define the
worst case circuit (‘onﬁgﬁration frc;nl capacitors’ point of view. For example. assume
that nodes n and m are connected by an X transistor. and node n is also being driven
to the ground through another path. If both nodes are charged high initially. then
in order to compute the worst case delay for node n. the capacitor at node m should |
be included. In other words. the X transistor between nodes n and m should be
considered as conducting for n's delay calculation. Thus. R, i1s unsuitable for this
purpose. On the other hand. sécondar}‘ drivers should be considered as open circuits
by nodes that are driven to either V'dd or the ground: hence. R, is inappropriate
either. Consequently. a third resistance. Ryom, is deﬁhed. R4, assumes that all X
transistors are conducting. but all secondary drivers are open circuits. R,;n. Riom-
and R, with respect to X transistors and secondary drivers are summarized in

the following table:

X transistors | Secondary drivers
Roin ON Not aﬁplicable
Ryom ON Open circuit
Roer OFF Open circuit

In order to compute 74, and 7p, , two effective capacitances. Cy and Cp. are also
collected for each node by compute_tau. C, is defined to be the ratio between 74,
and the resistance between node n and the donﬁnant driver. Similarly. Cp 1s equal
to the ratio between 7p_ and the same resistance. For example, if node n is driven
to the ground, then C4 = 74, /Rmer wWhere 74, = 3_j Rin(Ci — Cl). The definition
of 74, is a little bit different from that defined in Chapters 4 and 5 because. in here,
capacitors at unknown states are assumed to be charged high such that the delay
estimation can be conservative. Hence,

C_4 - Z (Ck - C}c) H AJ’ .

k j=k—-—=n
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1. transmit(n. accumulated. t)
3. if #'s state 1s unknown ' _
4. new.R «— accumulated.R + {R.ss(t). R ss(t). oc}:
o else ‘
6. new.R «— accumulated.R 4 {Ress(t). Ress(t). Ress(1)}:
7. if t’s state is unknown and accumulated.Cyy;.Cy = 0
8. new.C,q «— {0. 0}:
9. else -
10. new.Cyyj +— a.ccumula_ted.C,',dj * a'ccullllg‘l\l-%;if'}?d"‘“;
11, return(new ):
12. '} o

Figure 6.10: The transmit function called by compute_tau in Figure 6.9 .

Similarly,

CD:; {CF 11 .4J.-J.

j=k—-—n

A data structure which consists of
{R = {Rmin-deom-Rma:r}; Cadj = {C4 CD}; }

is returned by compute_tau. As shown in Figure 6.9. steps 3 through 15 initialize
the data structure a.ccording to the aforementioned assignments. Then compute_tau
does a depth-first traversal to collect the effective resistances and the effective ca-
pacitances. The transmit function in step 19 is listed in Figure 6.10, which handles
both the resistance of a series resistor (steps 3 thrbugh 6) and the adjustment factor
as described in Equation 6.1 (step 7 through 10). Step 7 of the transmit function
is particularly tricky. With reference to the scenario shown in Figure 6.11, if the
capacitors in subnets 4 and C are discharged while those in subnet B are charged
high initially, then in order to compute the worst case charge-sharing scenarios for

nodes in subnet 4. the capacitors in subnet C should be excluded.
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Figure 6.11: Scenario in which some capacitors should be excluded in charge-sharing
calculation.

When compute_tau returns the set of R's'and C’s for node n. the scheduling

algorithm schedules the driven event. In case a driven charge-sharing analysis is

required. then rp, will be computed. Computing 7p, is very similar to computing

Ta, O Tp,. and it can be done by a function similar to compute_tau.

6.3.3 Complexity of the Algorithm

Terman|26] has done a thorough analysis of RSIM's complexity. and his result can
also analyze the work in this section. In essence, final.value and compute_tau are
two core routines of the simulator. Both routines are based on a recursive depth-first
traversal. hence. their complexities are directly proportional to the number of nodes
in the cluster. Consequently, the final-value evaluation and the delay estimation for
each node can be done in linear time.

Terman also suggested a caching scheme to improve the overall complexity. He

observed that the data structures collected by final_value and compute_tau during
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L

Subnet I J I T
-
Drain Source |
Cache {Cache

Figure 6.12: Associating a cache with a transistor to optimize computation.

each tree walk can actually be shared by other nodes. Thus. he proposed to store the
information collected during each tree walk in caches which are associated with the
source and drain terminals of transistors. For example, when a recursive algorithm
has finished collecting parameters from the subnet shown in Figure 6.12. it stores the
parameters in the cache associated with the drain of the transistor befofe passing
it to the source. This cachéd information can be used by other nodes that require
the same information from the same subnet. With this optimization, Terman has
shown that the complete analysis of all nodes in the same cluster can be done in
time that is»proportionél3 to the number of transistors in the cluster. Interested

readers can refer to [26] for further details.

6.4 Performance Evaluation

Even though the models used in nRSIM are ‘'much more sophisticated than those
used in RSIM, they do not seem to slow down the simulator. On a per-cluster
basis, nRSIM indeed takes longer to execute. Yet, it also provides more accurate
predictions that eliminate fictitious events. Fictitious events, especially those due to
charge sharing with a driven path. are quite common in RSIM. When not properly

handled. fictitious events can severely slow down a simulator because they either

3More precisely, each transistor is crossed twice. One time in each direction to fill the cache.
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trigger other fictitious events or put extra burden on scheduling.

The following experiment was done by people who simulated the MIPS-X pro-
cessor. A functional simulator written by the members of the MIPS-X design team
uses RSIM and nRSIM as the back-end to simulate the mask. In order to compare
the performances of RSIM and nRSIM. Ackerman’s function was run on the PC
('progra.m counter) unit of t.h¢ processor. The simulation lasted for 334 MIPS-X ma-
chine cvcles. and it took RSIM 49 minutes and 14 seconds (8.84 seconds/cycle) on a
VAX 11/780 running Berkelev 4.3 UNIX. However. it only took nRSIM 45 minutes
and 44 seconds (8.22 ‘sec'.onds/ cyvcle) on the same machine. The slight speedup of
nRSIM does not indicate a definite performance edge over RSIM: however. it shows

that the new models are practical for switch-level simulators.

6.5 Summary

Timing and charge sharing in multiple-driver settings are not much different from
those in the single-driver setting. A systematic mechanism has been proposed to
transform a multiple-driver problem to the more familiar form assumed in previous
chapters.

The models proposed in this thesis can be implemented with algorithms derived
from RSIM. These algorithms use simple data structures and little computation.
Since the new models can eliminate fictitious events with better accuracy, they do

not slow down the speed of simulation despite greater complexity.
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Chapter 7
Conclusions

Switch-level simulators work with high-level models instead of solving detailed dif-
ferential equations. The precision of these high-level models determines the accu-
racy of their results. RSIM. a widely used simulator. models transistor networks as
resistor-capacitor networks. and it applies. simple approximations to estimate the
outputs of these RC networks. Some of these approximations can be drastically
improved by using slightly more complicated models. This thesis has identified two
major sites for improvement, which cover both logic and timing aspects.

In the evaluation of logic, switch-level simulators are complicated by the pres-
ences of X transistors. which introduce uncertainties to the electrical configuration
of a network. The logical value of a node is determined by the achievable volt-
ages at that node. The difficulty with DC-voltage computation is how to get a
conservative but non-pessimistic result. Voltage ranges and resistance ranges have
always been used to specify the achievable voltages and the associated resistances
at nodes; however, a closer inspection of how the relationship between voltages and
resistance 1s represented in the existing schemes shows that the old schemes can
produce undesirably pessimistic results.

A new scheme, the improved resistor-divider model, is then proposed. The new
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scheme is based on a simple parallel-and-series collapsing of resistor dividers. and it
constructs the result at each step by minimizing the errors in the voltage-resistance
solution space. The outcome of this scheme is guaranteed to be conservative and

order independent.

Ihvestigation in timing leads to better charge-sharing models. Charge sharing
in a nondriven network determines not only the final state of the network but also
the delay at each node. In a driven network. the charge stored in capacitors can
introduce glitches before the system reaches equilibrium. Previously. both charge-
sharing préblems have been given low priorities because they are complex and rare.
Although problems caused by improper charge sharing may only occupy a small
percentage of all design problems. without accurate models. real charge-sharing

problems may not be caught while fictitious charge-sharing events may be scheduled.

Two two-time-constant models have been proposed to model the charge-sharing
scenarios. These models are based on the observation that voltage waveforms in-
volving charge sharing are usually dominated by two time constants. The models
determine the time constants by matching geometric waveform characteristics such
as the area and the first moment. ‘The model-by-matching-waveform-characteristic
technique can be used by linear as well as nonlinear networks. However, waveforms

in a nonlinear network may have different shapes from those in a linear network.

The models described in this thesis have been implemented into nRSIM. The
actual implementation also handles multiple-driver configurations. With the addi-
tional accuracy provided by the new models, the new simulator can eliminate some

fictitious events such that its speed performance is comparative to that of RSIM.
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7.1 Future Work

The charge-sharing models describéd in this thesis assume that the gate input of
the switching transistor is a step function, hence. transistors always operate in their
linear regions. In reality. the input waveform is usually arbitrarily complex. and
before it reaches some switching voltage, the switching transistor is only partially
" turned on. Before the switching transistor is fully turned on. the redistribution of
charge is really controlled by the current conductivity of the switching transistor
instead of the actual arrangement of thé transistors and capacitors. The charge-
sharing models in this thesis have not taken slow inputs into account.

Horowitz[12] suggested using simple ramps to model slow inputs. In his timing
model for a gate driving an output network, delay consists of the gate delav due
to the slow input and the intrinsic delaf’ contributed by the output network. His
model computes the gate delay by modeling the gate as a voltage-controlled current
source. A similar approach may be taken here to model-the switching transistor as
a curfent source before the transistor reaches some switching point. |

Another potential improvement is in delay estimation involving X transistors.
The problem is fundmentally the same as that in the final-value computation —
how to conservatively but non-pessimistically compute the delay. The present
implementation uses the worst case transistor configuration and the worst case
capacitor configuration. When these two configurations are based on very different
connectivities, the delay estimation can be overly pessimistic.

The work in Chapter 3 has established a systematic way of solving a similar X-
transistor problem by looking at the solution space formed by voltage and resistance.

- Research that follows the same line of thought may also solve the delay-computation

problem.
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Appendix A
Zero at the Origin

Proof is presented here to show that in a linear system. the network transfer function
of a node starts and ends at the same voltage has a zero at the origin.
The voltage waveform of any node in a linear system consists of the sum of

exponential functions. Assume that the steady-state voltage is V5. the voltage 1

at any node can be expressed as V' = Vo + ¥; a;e”/. Due to the steady-state

condition, the sum of coefficients (3_; a;) is equal to 0.

The network transfer function of ¥ can be written as

Z a; Ao+ Ajs+ 487 + -+
; 1+7s 1+ Bjs+ Bys?+---

Since Ag is equal to Y;a; = 0, the numerator of the network transfer function

becomes s(A; + Azs + - --). This proves that there is a zero at the origin.
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Appendix B

Normalized Amplitude Function

With reference to Figure 4.8, the normalized amplitude function of V¢ can be solved

from two coupled linear differential equations, and it is equal to-

' 9 1-vV1I=4N :2_\/\/‘_—4}\3'
F(N)= = = ( =
1++1—-4N \14++/1—4N
where
N R, R,C,C; _ (rp. = 0. N(7D. — 7a.)
’ [R1Cy + (R + R2)Co)? 5, '

Although N depends on all four circuits components, it can be represented by three
variables: 74, 7p,, and 7p,. For physically realizable circuit components. N > 0
because Ry, R,, Cy, and C, are all nonnegative. The maximum value of N is 1/4

because

[RiCy — (R + R)C3)? +4R:CC, > 0
= [R1C1 + (R] -+ RQ)Cg]Q — 4R1R2CICQ Z 0

= >N,

b P

The normalized amplitude function is plotted in Figure B.1. Since the domain of

the function is narrow. it can be pre-computed and stored in a look-up table.
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Nommalized Amplitude

0.7 ) | - | ]
000 005 010 0.15 020 025

(Tpe - Tp ) (Tpe - 'FAe) / Tpe?

Figure B.1: Normalized amplitude as a function of 74,. 7p,. and Tpe.‘




"Appendix C

Proof of Waveform Similarity

This section proves that voltage V', at node N, in Figure 5.5 and voltage 1. at
node ¢ in Figure 5.4 are related as follows: Vi, (t') = V,(RC?t) w ‘here R = R, + R,.
C = C; + C,. and .t' is dimensionless.

For the network shown in Figure 5.4.

Ty dii(t) 15(2)
Ui(t) = -RC dt - R1C2 -
: vy ( ot
L2(t) = "R]Cl +R2)02 d’-’t( ) ]
Let t = RC?. t:hen the above equations become
" r [ s (@ !
UWRCY) = —ap@BCE) g _ gy dla(RCH)
datr at’
' RCt RCt’
U(RCt) = - ﬂ‘—%““)‘—(l—-ﬂ) A

Vi, and Vy, of the normalized network can be formulated as

dVn, (¢ dVn,
Un(t) = - ,———g;,( ) o1 - gyt gt,‘ )
. AV (t '
Unt) = ~apTitl g g Zll),

One can easily see from the above two sets of equations that Vi, (') = V.(RCt’).
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Appendix D
Dissection of the Linear Model

This section dissects the model discussed in Section 4.4. and interprets its compo-

nents.

Let the two-capacitor-two-resistor circuit shown in Figure 4.8 be the reduced-
network model of node ¢ in Figure 5.11. According to Equation 4.6, the components

of the reduced network have the following values:

'T]_‘)c — T4,
Cl = ——‘—Cz

Since the amplitude of a voltage spike in the reduced network is determined by the
ratio of the two capacitors and the ratio of the two resistors, the exact value of C,
is not important even though C), R;, and R, are all functions of C,. However, if
a carefully selected value is assigned to C,. the following analysis will be easier to
understand. Thus, let C; be 3, CP.

With some simple mathematical manipulations, one can show that

— Zk Rkecllc

“ =%,

and Rl = Rcc
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Strictly from Strictly from

driving tree — charging tree
E
-Rce . 4 Rlcc Rcc Ree Zk C-"): (Zk Cch )2

Zx Cx

I
|
|
| |
ZJ; R, C{(Rek=Ree) . I Zk Cy (21 R5.C7) )
I
!
|
|
|

-+

Figure D.1: The dissection of the linear charge sharing with a driven path model
described in Section 4.4. :

v v

where ¢ is the node connecting the driving tree with the charging tree. In addition.

one can also show that R, is composed of the following ‘three resistors in series:

ZkRkeCk<Rck_ .ce,) andR . ZL Ck(Z] )
R Ct ’ BT .z.cw '

R?] = RCC - RCC' “R22 =

These components are shown in Figure D.1.

This dissection reveals one interesting fact: R;, R,,. and C; can be derived
strictly from components of the driving tree while Ry, and C, can be derived strictly
from components of the charging tree. R,, is the only component which relies on
information from both trees; vet R,,’s dependency on the charging tree is merely
its total capacitance. Thus, at this level of abstraction, a charging tree and its

corresponding driving tree can almost be modeled separately.




Appendix E

Elaborate M'od‘_el versus

First-Order Model -

This section cdmpares the amplitude of a voltage spike found in Figure 5.12 to that
found in Figure D.1.

R,, is the only element which is in one figure but not the other. However,
the two circuits can still be identically the same if R,, is equal to zero. This can
happen under many situations; for example, when the driving tree of the circuit
being modeled has only one noninput node’. |

When R,, does not have a zero resistance, its value has a limited range. It
is maximized when the node being modeled (node ¢€) is closer to the ground than
all other nodes, and all other capacitors of the driving tree are located at node c;

conversely, R, is minimized. Mathematically,

Zk Rkeci-(() - Rce) Zk RkeC}l;(Rck - Rce) Zk RkeCJIc(Rcc - Rce)'
7 <Ry, = ki < h
Rce Zk Ck Rce Zk Ck Rce Zk Ck

or

CL

_Rce'— < R22 < (Rcc - Rce) CL
Cy

T

!This includes the trivial configuration (i.e. two-capacitor-two-resistor circuits).
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where € = (Zk_Rk(C',{.)/RCt and Cy = 3, CP. The bounds are intentionally
generous? such that the worst case scenarios can be evaluat.ed more easily. If all
other components in Figure D.1 are kept constants. the peak amphtude of the
voltage spike decreases monotonically with R,,. Thus, the difference between the
amplitudes in Figures 5.12 and D.1 is maximized when R,, has i its extreme values.
The two extremes are discussed separately. - . |

If R, ivs nonnegative (0 < Ry, < (R, — Rce) ) then the amplitude of the
spike in Figure D.1 is no greater than that in F igure 5.12. The difference becomes
progressively more significant for models with a smaller Rg,; and it is maximized
| when R;, = 0 (and R,, = (R, — R“)CCH ). In this extreme. if the circuit shown in
Figure D.1 is characterized by < a. # >>. then the circuit shown in Figure 5.12 is

characterized by <« 3 >. Among all a-f combinations, the difference

in the two circuits’ amplitudes can never be more than 0.076 (out of 1), which
occurs when a = 0.27 and 4 = 0.59. This difference is negiigibly small. so R,, does
not play an important role when it is nonnegative.

On the other hand, if R,, is negative (—R. &~ o < R,, < 0), then the amplitude
of the spike in Figure D.1 is greater than that in Figure 5.12. The difference is
maximized when R, = —RCC% and it cancels out Ry, + R,,. In this scenario, if
the circuit shown in Figure D.1 is characterized by < 1, 3 >>, then the circuit shown
in Figure 5.12 1s characterized by < 1 -, #>>. Among all a-3 combinations, the
difference between the amplitudes can be as large as 0.235 (out of 1), which occurs

when 8 = 0.40.

Although the difference in this case is significant, the scenario is rare. According

A pair of tighter bounds would be

Cr R”C'i) (CL R“C')
— e | - 5—— | SRy £ cc = Llce
e (CH Ro.Cy) SRS Re— R\ - 5oa)




129

* to the analysis of Section 4.4.3. when the value of R, (= Ry, + Ry, + Ry, ) is very

small or even negative. there is a good chance that the two-dominant-time-constant
assumption is violated (1.e. the node being model'ed‘really has more than two
dominant poles). When this happens, neither the elaborate nor the first-order is
sufficient a model: thus. the difference is not significant.

Consequently, any of the two models can be applied to most circuits. However.

the elaborate model is in general more preferable because it gives a more conserva-

tive approximation when the modeling assumption is breaking down.
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Appendix F
Simulation Results

This section summarizes the amplitudé differences between the circuits shown in
Figures D.1 and 5.12 for nMOS?, RC. and pMOS? technologies.

Assume that the circuit shown in Figure D.1 is characterized by < a, 8 >.
The maximum differences in amplitudes (computed by subtracting the amplitude
of the circuit shown in Figure 5.12 from that of the circuit shown in Figure D.1) for

all possible values of R,, are summarized in the following table:

Negative Extreme Positive Extreme

Difference { a B8 Difference | a J¢;

nMOS -0.080 0.36 | 0.60 0.310 1.00 | 0.31
RC -0.076 0.27 1 0.59 0.235 1.00 | 0.40
pMOS | -0.055 0.16 | 0.52 0.135 1.00 | 0.41

As one can see from the table that an nMOS two-capacitor-two-transistor net-

work driven to the ground is most sensitive to the variation of Ry, while a pMOS

1An nMOS two-capacitor-two-transistor network driven to the ground {(or a pMOS two-capacitor-
two-transistor network driven to Vdd).
2A pMOS two-capacitor-two-transistor network driven to the ground {(or an nMOS two-capacitor-

two-transistor network driven to Vdd}.
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two-capacitor-tWo-tra.nsistor network driven to t.he. ground is the least. Since. ac-
éording to Figures 5.6. 5.8, and 5.10, the voltage spike of the nMOS configuration
has the lowest amplitude among the three configurations. its sensitivity to the value
of R,, is the least important.

" One can also infer from the ana.l‘ysis'in Appendix E that when the amplitude
of the circuit shown in Figure D.1 is much larger than that of the éircuit shown in
Figure 5.12, the basis of a two-capacitor-two-transistor mapping is failing: under
normal situations, the two circuits should have approximately the same amplitude.

“ However, since the model shown in Figure D.1 is b_etter at detecting a breakdoﬁ’n
in the mapping basis (i.e. when R; < 0). it can be more preferable in spite of its

lack of physical intuition for transistor networks.
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