IRSIM(1) USER COMMANDS IRSIM(1)

NAME

irsim — An event-driven logic-level simulator for MOS circuits

SYNOPSIS

irsim [-s] prm _filesim file... [+hist_file] [-cmd file...]

DESCRIPTION

IRSIM is an event-driven logic-level simulator for MOS (both N and P) transistor circuits. Two simulation
models are available:

switch
Each transistor is modeled as a voltage-controlled switch. Useful for initializing or determining the
functionality of the network.

linear
Each transistor is modeled as aresistor in series with a voltage-controlled switch; each node has a
capacitance. Node values and transition times are computed from the resulting RC network, using
Chorng-Y eoung Chu’s model. Chris Terman’s original model is not supported any more.

If the -s switch is specified, 2 or more transistors of the same type connected in series, with no other
connections to their common source/drain will be stacked into a compound transistor with multiple gates.

The prm_file is the electrical parameters file that configure the devices to be simulated. It defines the
capacitance of the various layers, transistor resistances, threshold voltages, etc... (see presim(1)). If prm_file
does not specify an absolute path then IRSIM will search for the prm_file as follows (in that order):

1) /<prm file> (in the current directory).

2) ~cad/lib/<prm file>

3) ~/cad/lib/<prm file>.prm

If ~cad/ does not exist, IRSIM will try to use directory /projects/cad. The default search directory (~cad)
can be overriden by setting the environment variable CAD_HOME to the appropriate directory prior to
running IRSIM (i.e. setenv CAD_HOME /usr/beta/mycad).

IRSIM first processes the files named on the command line, then (assuming the exit command has not been
processed) accepts commands from the user, executing each command before reading the next.

File names NOT beginning witha’-’ are assumed to be sim files (see sim(5)), note that this version does not
reguire to run the simfiles through presim. Thesefiles are read and added to the network database. Thereis
only a single name space for nodes, so referencesto node "A" in different network files al refer to the same
node. Whilethisfeature allows oneto modularize alarge circuit into several network files, care must betaken
to ensure that no unwanted node merges happen due to an unfortunate clash in names.

File names prefaced with a’-" are assumed to be command files: text files which contain command lines to
be processed in the normal fashion. Thesefilesare processed line by line; when an end-of-fileis encountered,
processing continues with the next file. After all the command files have been processed, and if an "exit"
command has not terminated the simulation run, IRSIM will accept further commands from the user,
prompting for each one like so:

irsim>
The hist_file isthe name of afile created with the dumph command (see below). If it ispresent, IRSIM will

initilize the network to the state saved in that file. This file is different from the ones created with the ">"
command since it saves the state of every node for all times, including any pending events.

This version supports changes to the network through the update command. Also, the capability to
incrementally re-simulate the network up to the current time is provided by the isim command.

IRSIM(1) USER COMMANDS IRSIM(1)

COMMAND SUMMARY

@ filename

take commands from command file
?wnode... print info about node’s source/drain connections
I'wnode... print info about node' s gate connections
< filename restore network state from file
> filename write current network stateto file
<< filename sameas" <" but restoresinputstoo
| comment... comment line
activity from[to] graph circuit activity in timeinterval
anawnode... display nodesin analyzer window
analyzer wnode... display nodesin analyzer window
assert wnode [m] val assert that wnode equals value
back [time] move back totime
c[n] simulatefor nclock cycles (default: 1)
changesfrom[to] print nodesthat changed in timeinterval
clock [node[val]] definevalue sequence for clock node
clear clear analyzer window (remove signals)
d [wnode] ... print display list or specified node(s)
debug [debug_level...]

set debug level (default: off)
decay [n] set charge decay time (0 => no decay)
display [arg] ... control what gets displayed when
dumph filename... write net history tofile
exit [status] returntosystem
flush [time] flush out history up to time (default: now)
h wnode... make node logic high (1) input
has coords print YESif transistor coordinates are available
inputs print current list of input nodes
ires[n] set incremental resolution tonns
isim [filename] incrementally resimulate changes form filename
I wnode... make node logic low (0) input
logfile [filename] start/stop log file
model [name] set simulation model to name
p step clock one simulation step (phase)
path wnode... display critical path for last transition of a node
print comment... print specified text
printp print alist of all pending events
printx print all undefined (X) nodes
g terminate input from current stream
R [n] simulatefor ncycles (default:longest sequence)
readh filename read history from filename
report[level] set/reset reporting of decay events
s[n] simulatefor nns. (default: stepsize)
stepsize [n] set simulation step sizeto nns.
set vector value assign value to vector
setlog[file|off] log net changesto file (off -> no log)
"setpath" " [path...]"

set sear ch path for cmd files
stats print event statistics
t [-]wnode... start/stop tracing of specified nodes
tcap print list of shorted transistors
"time [command] print resource utilization summary
uwnode... make node undefined (X) input
unitdelay [n] forcetransitionstotake nns. (O disables)
update filename read net changesfrom file
V [node[value...]] define sequence of inputsfor a node
vector label node... define bit vector
w [-]wnode... add/delete nodes from display list
wnet [filename] write network tofile
x wnode... remove node from input lists
Xdisplay[host:n] set/show X display (for analyzer)

IRSIM(1) USER COMMANDS IRSIM(1)

COMMAND DESCRIPTIONS
Commands have the following simple syntax:

cmd argl arg2 ... argn <newline>

where cmd specifies the command to be performed and the argi are arguments to that command. The
arguments are separated by spaces (or tabs) and the command is terminated by a <newline>.

If cmd isnot one of the built-in commands documented below, IRSIM appends".cmd" to the command name
and tries to open that file as a command file (see " @" command). Thus the command "foo" has the same
effect as" @ foo.cmd".

Notation:

indicates zero or morerepetitions

[1 enclosed arguments are optional
node name of node or vector in network

wnode name of node or vector in network, can include’*’ wildcard which matches any sequence of zero or
more characters. The pair of characters’{’ and’}’ denote iteration over the limits enclosed by it, for
example: name{1:10} will expand into namel, name2 ... namel0. A 3rd optional argument setsthe
stride, for example: name{1:10: 2} will expand into namel, name3, ... name7, name9.

comment...
Lines beginning with vertical bar are treated as comments and ignored -- useful for comments or
temporarily disabling certain commands in a command file.

Most commands take one or more node names as arguments. Whenever a node name is acceptible in a
command line, one can also use the name of a bit vector. In this case, the command will be applied to each
node of the vector (the"t" and "d" treat vectors specially, see below).

vector label node...
Define a bit vector named " label" which includes the specified nodes. If you redefine a bit
vector, any special attributes of the old vector (e.g., being on the display or tracelist) arelost.
Wild cardsarenot accepted in thelist of node names since you would have no control over the
order in which matching nodes would appear in the vector.

The simulator performs most commands silently. To find out what’s happened you can use one of the
following commands to examine the state of the network and/or the simulator.

set vector value
Assign value to vector. For example, the following sequence of commands:

vector BUS bit.1 bit.2 hit.3 set BUS 01x

The first command will define BUS to be a vector composed of nodes bit.1, bit.2, and bit.3. The
second command will assign the following values:

bit.1=0

hit.2=1

hit.3 =X

Value can be any sequence of [0,1,h,H,I,L,x,X], and must be of the same length as the bit vector
itself.

IRSIM(1) USER COMMANDS IRSIM(1)

d [wnode] ...
Display. Without arguments displays the values all nodes and bit vectors currently on the
display list (seew command). With arguments, only displaysthe nodes or bit vectors specified. See
also the "display" command if you wish to have the display list printed out automatically at the end
of certain simulation commands.

w [-]wnode...
Watch/unwatch one or more nodes. Whenever a" d" command is given, each watched node
will displayed like so:

nodel=0 node2=X ...

To remove a node from the watched list, preface its name with a’-'. If wnode is the name of a bit
vector, the values of the nodes which make up the vector will be displayed as follows:

label=010100
where thefirst 0 isthe value of first node in the list, the first 1 the value of the second node, etc.

assert wnode [mask] value
Assert that the boolean value of the node or vector wnode is value. If the comparison fails, an
error messageisprinted. If maskis given then only those bits corresponding to zero bitsinmask take
part in the comparison, any character other than O will skip that bit. The format of the error message
is the following:

(tty, 3): assertion failed on’name’ 10X 10 (1010X)

Where nameis the name of the vector, followed by the actual value and the expected value enclosed
in parenthesis. If amask is specified, then bits that were not compared are printed as’-’.

anawnode...
Thisisashorthand for the analyzer command (described below).

analyzer wnode...
Add the specified node(s)/vector(s) to the analyzer display list (see irsim-analyzer (3) for a
detailed explanation). If theanalyzer window doesnot exist, it will becreated. 1f noarguments
aregiven and the analyzer window already exists, nothing happens.

Xdisplay [host:display]
You must be able to connect to an X-server to start the analyzer. If you haven't set up the
DISPLAY environment variable properly, the analyzer command may fail. If this is the case you
can use the Xdisplay command to set it from within the simulator. With no arguments, the name of
the current X-server will be printed.

clear Removes all nodes and vectors from the analyzer window. This command is most useful in command
scripts for switching between different signals being displayed on the analyzer.

"?"and"!" allow the user to go both backwards and forwards through the network. Thisisauseful debugging
aid.

? wnode...
Prints a synopsis of the named nodes including their current values and the state of all
transistors that affect the value of these nodes. This is the most common way of wandering
through the network in search of what went wrong. The output from the command ? out looks
like
out=0 (vI=0.3 vh=0.8) (0.100 pf) is computed from:
n-channel phi2=0 out=0 in=0 [1.0e+04, 1.3e+04, 8.7e+03]
pulled down by (a=1 b=1) [1.0e+04, 1.3e+04, 8.8e+03]
pulled up [4.0e+04, 7.4e+04, 4.0e+04]

The first line gives the node's name and current value, its low and high logic thresholds, user-
specifed low-to-high and high-to-low propagation delays if present, and its capacitance if nonzero.

IRSIM(1) USER COMMANDS IRSIM(1)

Succeeding lines list the transistor whose sources or drains connect to this node: the transistor type
("pulled down" is an n-channel transistor connected to gnd, "pulled up” is a depletion pullup or p-
channel transistor connected to vdd), the values of the gate, source, and drain nodes, and the
modeling resistances. Simple chains of transistors with the same implant type are collapsed by the
—soptioninto asingletransistor with a"compound" gate; compound gates appear as a parenthesized
list of nodes (e.g., the pulldown shown above). The three resistance values -- static, dynamic high,
dynamic low -- are given in Kilo-ohms.

Finally, any pending events for a node are listed after the electrical information.

I'wnode...
For each nodein theargument list, print a list of transistors controlled by that node.

tcap Prints a list of all transistors with their source/drain shorted together or whose source/drain are
connected to the power supplies. These transistors will have no effect on the simulation other than
their gate capacitance load. Although transistors connected acrossthe power supplies are real design
errors, the simulator does not complain about them.

Any node can be made an input -- the simulator will not change an input node’s value until it is released.
Usually on specific nodes -- inputsto the circuit -- are manipulated using the commands below, but you can
fool with a subcircuit by forcing values on internal nodes just as easily.

h wnode...
Force each node on the argument list to be a high (1) input. Overrides previous input
commandsif necessary.

[wnode...
Like"h" except forcesnodesto bealow (0) input.

u wnode...
Like"h" except forcesnodesto be a undefined (X) input.

X wnode...
Removes nodes from whatever input list they happen to be on. The next ssimulation step will
determine the correct node value from the surrounding circuit. This is the default state of
most nodes. Notethat thisdoes not force nodesto havean " X" value-- it smply removesthem
from theinput lists.

inputs

prints the high, low, and undefined input lists.

It is possible to define a sequence of values for a node, and then cycle the circuit as many times as necessary
to input each value and simulate the network. A similar mechanism is used to define the sequence of values
each clock node goes through during a single cycle.

Each value isalist of characters (with no intervening blanks) chosen from the following:
1, h, H logic high (1)
0,1, L logic low (0)
u, U undefined (X)
X, X remove node from input lists

Presumably the length of the character list is the same as the size of the node/vector to which it will be
assigned. Blanks (spacesand tabs) are used to separate valuesin asequence. The sequenceis used one value
at atime, left to right. 1f more values are needed than supplied by the sequence, IRSIM just restarts the
seguence again.

V [node[value...]]
Define a vector of inputsfor a node. After each cycle of an " R" command, the node is set to
the next value specified in the sequence.

IRSIM(1) USER COMMANDS IRSIM(1)

With no arguments, clearsall input sequences (does not affect clock sequences however). With one
argument, "node", clears any input sequences for that node/vector.

clock [node [value...]]
Define a phase of the clock. Each cycle, each node specified by a clock command must run
through its respective values. For example,

clock phi11000

clock phi20010

defines a simple 4-phase clock using nodes phil and phi2. Alternatively one could have issued the
following commands:

vector clk phil phi2

clock clk 10 00 01 00

With no arguments, clears all clock sequences. With one argument, "node", clears any clock
sequences for that node/vector.

After input values have been established, their effect can be propagated through the network with the
following commands. The basic simulated time unit is 0.1ns; all event times are quantized into basic time
units. A simulation step continues until stepsize ns. have elapsed, and any events scheduled for that interval
are processed. It is possible to build circuits which oscillate -- if the period of oscillation is zero, the
simulation command will not return. |f this seems to be the case, you can hit <ctrl-C> to return to the
command interpreter. Note that if you do thiswhile input is being taken from afile, the simulator will bring
you to the top level interpreter, aborting all pending input from any command files.

When using the linear model (see the "model" command) transition times are estimated using an RC time
constant calculated from the surrounding circuit. When using the switch model, transitions are scheduled
with unit delay. These calculations can be overridden for anode by setting itstplh and tphl parameterswhich
will then be used to determine the time for atransition.

s[n] Simulation step. Propogates new values for the inputs through the network, returns when n
(default: stepsize) ns. have passed. If n is specified, it will temporarily override the stepsize value.
Unlike previous versions, this value is NOT remembered as the default value for the stepsize
parameter. If the display mode is "automatic", the current display list is printed out on the
completion of this command (see "display" command).

c[n] Cycle ntimes (default: 1) through the clock, as defined by the "clock" command. Each phase of the
clock lasts stepsize ns. If the display mode is "automatic”, the current display list is printed out on
the completion of this command (see "display" command).

p Step the clock through one phase (or simulation step). For example, if the clock is defined as above
clock phil 1000
clock phi2 0010

then "p" will set phil to 1 and phi2 to 0, and then propagate the effects for one simulation step. The
next time"p" isissued, phil and phi2 will both be set to 0, and the effects propagated, and so on. If
the"c" command isissued after "p" hasbeen used, the effect will beto step through the next 4 phases
fromwhere the "p" command left off.

R [n] Runthesimulator through ncycles(seethe"c" command). If nisnot present maketherunaslong
asthelongest sequence. If display modeisautomatic (see"display" command) the display isprinted
at the end of each cycle. Each"R" command starts over at the beginning of the sequence defined
for each node.

back time
Move back to the specified time. This command restores circuit state as of time, effectively
undoing any changesin between. Notethat you can not move past any previously flushed out
history (see flush command below) as the history mechanism is used to restore the network
state. Thiscommand can be useful toundo a mistakein theinput vectorsor tore-simulatethe
circuit with a different debug level.

IRSIM(1) USER COMMANDS IRSIM(1)

path wnode...
display critical path(s) for last transition of the specified node(s). Thecritical path transistions
arereported using the following for mat:

node -> value @ time (delta)

where node is the name of the node, value is the value to which the node transitioned, time is the
time at which the transistion occurred, and delta is the delay through the node since the last
transition. For example:

critical path for last transition of Hit_v1:

phil-> 1 @ 2900.0ns, node was an input

PC_driver-> 0 @ 2900.4ns (0.4ns)

PC b g1->1 @2904.0ns (3.6ns)

tagDone b v1->0 @ 2912.8ns (8.8ns)

tagDonel v1->1 @ 2915.3ns (2.5ns)

tagDonel b v1->0 @ 2916.0ns (0.7ns)

tagDone v1->1 @ 2918.4ns (2.4ns)

tagCmp_b v1->0 @2922.1ns (3.7ng)

tagCmp_v1->1 @ 2923.0ns (0.9ns)

Vbhit_ b v1->0 @ 2923.2ns (0.2ns)

Hit_v1->1 @ 2923.5ns (0.3ns)

activity from_time [to_time]
print histogram showing amount of circuit activity in the specified timeinteval. Actually only
shows humber of nodes which had their most recent transition in theinterval.

changes from _time [to_time]
print list of nodeswhich last changed valuein the specified timeinterval.

printp
print list of all pending events sorted intime. The node associated with each event and the scheduled
timeis printed.

printx
print alist of all nodes with undefined (X) values.

Using the trace command, it is possible to get more detail about what’ s happening to a particular node. Much
of what is said below isdescribed in much more detail in "L ogic-level Simulationfor VLSI Circuits" by Chris
Terman, available from Kluwer Academic Press. When a node is traced, the simulator reports each change
in the node' s value:

[event #100] node out.1: 0-> 1 @ 407.6ns
The event index is incremented for each event that is processed. The transition is reported as
old value -> new value @ report time

Note that since the time the event is processed may differ from the event’s report time, the report time for
successive events may not be strictly increasing.

Depending on the debug level (see the "debug" command) each calculation of a traced node's value is
reported:

[event #99] node clk: 0 -> 1 @ 400.2ns

final_value(Load) V=[0.00, 0.04] =>0

..compute_tau(Load)

{Rmin=2.2K Rdom=2.2K Rmax=2.2K} {Ca=0.06 Cd=0.17}

tauA=0.1 tauD=0.4 ns

[event #99: clk->1] transition for Load: 1 -> 0 (tau=0.5ns, delay=0.6ns)

In this example, a calculation for node Load is reported. The calculation was caused by event 99 in which
node clk went to 1. When using the linear model (asin this example) the report shows

IRSIM(1) USER COMMANDS IRSIM(1)

current value -> final value

The second line displays information regarding the final value (or dc) analysis for node "L oad"; the minimun
and maximum voltages as well as the final logical value (0 in this case).

The next three lines display timing analysis information used to estimate the delays. The meaning of the
variables displayed can be found Chu’ sthesis: "Improved Models for Switch-Level Simulation"”.

When the final valueis reported as"D", the node is hot connected to an input and may be scheduled to decay
fromits current valueto X at some later time (see the "decay" command).

"tau" is the calculated transition time constant, "delta’ is when any consequences of the event will be
computed; the difference in the two times is how IRSIM accounts for the shape of the transition waveform
on subsequent stages (see reference given above for more details). The middle lines of the report indicate the
Thevenin and capacitance parameters of the surrounding networks, i.e., the parameters on which the
transition calculations are based.

debug [ev dc tau taup tw spk] [off] [all]
Set debugging level. Useful for debugging simulator and/or circuit at various levels of the
computation. The meaning of the various debug levelsis as follows:

ev display event enqueueing and dequeueing.

dc display dc calculation information.

tau display time constant (timing) calculation.

taup display second time constant (timing) calculation.

tw display network parametersfor each stage of the tree walk, thisappliestodc, tau, and taup. This
level of debugging detail is usually needed only when debugging the simulator.

spk displays spike analysis information.
all Thisisashorthand for specifying all of the above.
off Thisturns off all debugging information.

If adebug switch is on then during a simulation step, each time a watched node is encounted in
some event, that fact is indicated to the user along with some event info. If a node keeps
appearing in this prinout, chances arethat itsvalueis oscillating. Vice versa, if your circuit never
settles (ie., it oscillates) , you can use the "debug" and "t" commands to find the node(s) that are
causing the problem.

Without any arguments, the debug command prints the current debug level.

t [-]wnode...
set trace flag for node. Enablesthe various printouts described above. Prefacing the node
namewith '-’ clear itstraceflag. If "wnode" isthe name of a vector, whenever any node of
that vector changes value, the current time and the values of all traced vectorsis printed.
Thisfeatureisuseful for watching therelative arrival times of values at nodesin an output
vector.

System interface commands:

> filename
Werite current state of each node into specified file. Useful for making a breakpoint in your
simulation run. Only storesvaluessoisn’t really useful to" dump" arun for later use, i.e., the
current input lists, pending events, etc. are NOT saved in the statefile.

< filename
Read from specified file, reinitializing the value of each node as directed. Notethat network

IRSIM(1) USER COMMANDS IRSIM(1)

must already exist and be identical to the network used to create the dump file with the " >"
command. These state saving commands arereally provided so that complicated initializing
sequences need only be simulated once.

<< filename
Same as" <" command, except that this command will restore the input status of the nodes as
well. It does not, however, restore pending events.

dumph [filename]
Writethe history of the simulation to the specified file, that is; all transistions sincetime = 0.
The resulting file is a machine-independent binary file, and contains all the required
information to continue simulation at the time the dump takes place. If the filename isn’t
specified, it will be constructed by taking the name of the sim_file (from the command ling)
and appending " .hist" toit.

readh filename
Read the specified history-dump fileinto the current network. Thiscommand will restorethe
state of thecircuit to that of thedump file, overwriting the current state.

flush [time]
If memory consumption due to history maintanance becomes prohibitive, this command can
be used to free the memory consumed by the history up to the time specified. With no
arguments, all history up to the current point in the simulation is freed. Flushing out the
history may invalidate an incremental simulation and the portions flushed will no longer
appear in the analyzer window.

setpath [path...]
Set the sear ch-path for command files. Path should be a sequence of directoriesto be sear ched
for ".cmd" files,"." meaningthe current directory. For eaxmple:

setpath . /usr/me/rsim/cmds /cad/lib/emds

With no arguments, it will print the current search-path. Initially thisisjust ".".

print text...
Simply prints the text on the user’s console. Useful for keeping user posted of progress
through a long command file.

logfile [filename]
Create a logfile with the specified name, closing current log file if any; if no argument, just
close current logfile. All output which appears on user’'s console will also be placed in the
logfile. Output to the logfile is cleverly formatted so that logfiles themselves can serve as
command files.

setlog [filename | off]

Record all net changes, aswell asresulting error messages, to the specified file (see " update"
command). Net changes are always appended to the log-file, preceding each sequence of
changes by the current date. |If the argument is off then net-changes will not be logged. With no
arguments, the name of the current log-file is printed.

Thedefault isto alwaysrecord net changes; if no filename is specified (using the " setlog” command)
the default filename irsim_changes.log will be used. The log-files are formatted so that log-files
may themselves be used as net-change files.

wnet [filename]
Werite the current network to the specified file. If the filename isn’t specified, it will be
constructed by taking thename of thesim_file (from the command line) and appending " .inet"
toit. Theresulting file can beused in a future simulation run, asif it werea sim file. Thefile
produced is a machine independent binary file, which istypically about 1/3 the size of the sim
fileand about 8 timesfaster to load.

time [command]
With noargument, a summary of timeused by thesimulator isprinted. If argumentsaregiven

IRSIM(1) USER COMMANDS IRSIM(1)

the specified command istimed and atime summary isprinted when the command completes.
Theformat of thetime summary is Uu SSE P% M, where:

U => User time in seconds

S=> System time in seconds

E => Elapsed time, minutes:seconds

P => Percentage of CPU time (((U + S)/E) * 100)

M => Median text, data, and stack size use

g Terminate current input stream. If thisistyped at top level, the simulator will exit back to the system;
otherwise, input revertsto the previous input stream.

exit [n]
Exit to system, nisthe reported status (default: 0).

Simulator parameters are set with the following commands. With no arguments, each of the commands
simply prints the current value of the parameter.

decay [n]
Set decay parameter to n ns. (default: 0). If non-zero, it tells the number of ns. it takes for charge
on anodeto decay to X. A value of 0 implies no decay at all. Y ou cannot specify this parameters
separately for each node, but this turns out not to be a problem. See"report" command.

display [-][cmdfile] [automatic]
set/reset the display modes, which are

cmdfile commands executed from command files are displayed to user before executing. The
default is cmdfile = OFF.

automatic print out current display list (see"d" command) after completion of "s" or "¢" command.
The default is automatic = ON.

Prefacing the previous commands with a"-" turns off that display option.

model [name] Set simulation model to one of the following:

switch
Model transistors as voltage controlled switches. This model uses interval logic
levels, without accounting for transistor resistances, so circuits with fighting
transistors may not be accuratelly modelled. Delays may not reflect the true speed
of the circuit aswell.

linear

Model transistors as a resistor in series with a voltage controlled switch. This
model uses a single-time-constant computed from the resulting RC network and
uses a two-time-constant model to analyze charge sharing and spikes.

Thedefault isthelinear model. Y ou can change the simulation model at any time -- even with events
pending -- as only new calculations are affected. Without arguments, this command prints the
current model name.

report [level]
When level isnonzero, report all nodes which are set to X because of charge decay, regardless
on whether they are being traced. Setting level to zero disables reporting, but not the decay
itself (see" decay" command).

stepsize [n]
Specify duration of simulation step or clock phase. nisspecified in ns. (nanoseconds). Floating
point numbers with up to 1 digit past the decimal point are allowed. Further decimals are trucated
(i.e. 10.299 == 10.2).

10

IRSIM(1) USER COMMANDS IRSIM(1)

unitdelay [n]
When nonzero, force all transitions to take n ns. Setting the parameter to zero disables this
feature. The resolution isthe same as for the "stepsize" command.

stats Print event statitistics, as follows:
changes = 26077

punts (cns) = 208 (34)

punts = 0.79%, cons_punted = 16.35%
nevents = 28012; evaluations = 27972

Where changes is the total number of transistions recorded, punts is the number of punted events,
(cns) is the number of consecutive punted events (a punted event that punted another event). The
penultimate line shows the percentage of punted events with respect to the total number of events,
and the percentage of consecutive punted events with respect to the number of punted events. The
last line shows the total number of events (nevents) and the number of net evaluations.

Incremental simulation commands:

Irsim supports incremental changes to the network and resimulation of the resulting network. Thisis done
incrementally so that only the nodes affected by the changes, either directly or indirectly, are re-evaluated.

update filename
Read net-change tokens from the specified file. The following net-change commands are
available:

add type gate source drain length width [area]

delete type gate source drain length width [area]
move type gate source drain length width [area] g sd
cap node value

N node metal-area poly-area diff-area diff-perim

M node M2A M2P MA MP PA PP DA DP PDA PDP
thresh node low high

Delay node tplh tphl

For adetailed dscription of this file see netchange(5). Note that thisis an experimental interface
and is likely to change in the future.

Note that this command doesn’t resimulate the circuit so that it may leave the network in an
inconsistent state. Usually this command will be followed by an isim command (see below), if
that isnot the case then it’ sup to the user to initilize the state of the circuit. Thiscommand exists
only for historical reasons and will probably disappear in the future. It’'s useis discouraged.

isim [filename]
Read net-change tokens from the specified file (see netchange(5)) and incrementally
resimulate the circuit up to the current simulation time (not supported yet).

iresn Theincremental algorithm keepstrack of nodes deviating from their past behavior asrecorded
inthenetwork history. During resimulation, a nodeisconsidered todeviatefromitshistory
if it'snew stateisfound to bedifferent within n nsof its previous state. Thiscommand allows
for changing the incremental resolution. With no arguments, it will print the current resolution.
The default resolutionis 0 ns.

SEE ALSO

presim(1) (now obsolete) rsim(1) irsim-analyzer(3) sim(5) netchange(5)

11

