
Fault Simulation Using Irsim

Arturo Salz

Computer Systems Laboratory

Stanford University

April 3, 1993

1 Introduction

Digital VLSI circuits are tested by applying to their input pins a set of patterns that exercise

some or all of the circuit’s functions. During fabrication, some of these functions may develop

faults that are sensitive to the test patterns. In most cases, however, a test pattern cannot,

for practical reasons, test all faults since that would require use of exhaustive data patterns.

Therefore, although a circuit may pass the test, there is no guarantee that the circuit is fault-free.

Thus, it is important to determine how well a test can identify a faulty circuit.

The most common criterion for judging the quality of a test is the fault coverage obtained

from a fault simulator. Typically, fault coverage refers to the percentage of single faults detected

by the test. As a rule, test engineers attempt to provide as close as possible to 100% fault

coverage. Due to the difficulty in developing such tests, however, in practice, a fault coverage

that is too high is difficult to achieve.

2 Fault Simulation: Basic Concept

In order to fault-simulate a design, the designer must provide the circuit netlist and the test

pattern to be applied to circuit’s inputs. The test pattern is used to simulate the circuit once,

yielding the expected values at the outputs of the circuit (i.e. the “good” machine). This step

is the same as a conventional simulation. After the fault-less circuit has been simulated, the

simulator proceeds to inject into the circuit one fault at a time. For each such fault, the circuit

is resimulated in order to determine whether the fault is observable at the circuit’s outputs. To

do this, the designers must also tell the fault simulator which nodes correspond to output pins

and when they are to be sampled. For example, output pins whose data is valid on
�

1 should

be sampled only on the falling edge of
�

1.

Faults that cause an output pin (or pins) to deviate from the value provided by the good

machine at the time of sampling are said to be observable: their effect can be detected by the

test pattern in question. Note, however, that since X represents an intermediate or unknown

logical value, a fault that causes an output to become X (or viceversa) may not be detectable in

practice. Such faults are said to be non-deterministically observable.

Although faults on actual chips are caused by physical defects, such as breaks or shorts

between the fabrication layers, the most common type of fault model used by fault simulators is

the “stuck-at” fault. This type of fault models each faulty circuit by sticking (or forcing) a fixed

1

value onto one of the internal nodes in the circuit. Thus, to test whether a fault at a particular

node is observable, the stuck-at model simulates the circuit twice: once with the node stuck-at-0,

and once with the node stuck-at-1. Since testing all nodes in the circuit in this fashion would

be extremely time-consuming, most fault simulators restrict their analysis to some statistically

representative number of nodes. The process of selecting which nodes are to be tested is termed

fault seeding.

3 Fault Simulation Using Irsim

In order to run a fault simulation, you must use a special version of Irsim, called “ifsim”. If you

previously used Irsim to simulate your design, you only need to create one additional file before

starting a fault simulation. Ifsim accepts all the same commands as Irsim, plus one additional

command to initiate a fault simulation: faultsim.

The easiest way to run a fault simulation on your design is to first run Ifsim as you would

using Irsim, and at the end of the simulation run issue the faultsim command. This command

has the following form:

faultsim setup-file � output-file �
where setup-file is the name of a file containing the information regarding output pins and their

sampling timing, and output-file is the name of the file where the fault-simulation output will be

recorded. If no output-file is specified, Ifsim will use the file fsim.out.

After reading the setup file, Ifsim will select the maximum number of nodes into which

stuck-at faults will be injected. By default, Ifsim uses 20% of all nodes in the circuit. Fault

seeding then proceeds by randomly selecting the required number of nodes from all candidate

nodes. A node is a fault candidate if at least one transistor gate is connected to the node, and

the node is not a primary input (it is never driven). At the end of the simulation, the output file

will contain detailed information regarding each fault tested; this is followed by a brief summary

that includes the fault coverage.

3.1 Setup file

This file specifies all output nodes, the timing for their sampling, and, optionally, the percentage

of nodes to be seeded. There are basically three commands that can be used in this file; their

syntax is as follows:

seed � percentage �

trigger � on-node� � transition-value� � delay �
� output-list�

sample � period � � offset �
� output-list�

2

The seed command, if present, must be the first non-empty line in the file. It’s � percentage�
argument must be an integer number (in the range [1–100]), which specifies the percentage of

the circuit’s nodes that should be considered for fault seeding. If this command is missing, Ifsim

will seed up to 20% of the circuit’s nodes.

Outputs can be sampled using either a fixed time interval, or the rising/falling edge of some

other signal in the circuit. The first type of sampling is specified using the sample command,

the second is specified through the trigger command.

The trigger command indicates that all nodes specified in � output-list� should be sampled

when � on-node� makes a transition to � transition-value� . Note that � output-list� can span multiple

lines, each of which can contain a list of nodes separated by blanks. The list of outputs is

terminated by a line containing the single entry ***. Also, just like in Irsim, any node name

can include the wildcard character ‘*’, it can denote iteration by using the pair of characters ‘� ’

and ’� ’, or it can be the name of a user-defined vector. The optional argument � delay � specifies

that the signals should be sampled � delay� ns after the specified transition. For example, the

following file indicates that primary outputs ADR0, ADR1, ADR2, ADR3, RD, and WR should

be sampled on the falling edge of signal phi1, while outputs DATA0, DATA1, DATA2, DATA3,

and DATA4 should be sampled 10ns after the rising edge of signal phi2:

trigger phi1 0

ADR� 0:3�
RD WR

trigger phi2 1 10

DATA0 DATA1 DATA2

DATA3

DATA4

The format of the sample command is similar to the trigger command, however, instead of

using another signal to trigger the sampling of the outputs, they are sampled every � period � ns.

The optional � offset � argument indicates that the sampling should begin � offset � ns from the start

of the simulation. For example, the following entry indicates that outputs clock1 and clock2

should be sampled every 50ns starting from time 100ns (150, 200, etc):

sample 50.0 100.0

clock1 clock2

3

3.2 Output File

The output file produced by Ifsim consists of a series of lines, each of which indicates the result

of injecting a single fault. Each line indicates the following information:

Detected Fault:
� node at which the fault was injected.
� type of fault (1 for stuck-at-1, 0 for stuck-at-0).
� simulation time at which the fault was detected.
� the output at which the fault was detected.

Undetected Fault:
� the node at which the fault was injected.
� type of fault (1 for stuck-at-1, 0 for stuck-at-0).

The list of faults is followed by a summary that includes the following:

� The total number of faults seeded.
� The number of detected faults.
� The number of undetected faults.
� The fault coverage as the percentage of detected faults.
� The number of probably detected faults.

The last item corresponds to outputs that deviate from the good machine at the time of

sampling, but they do so by deviating to or from an X logic state.

For example, the following output file indicates that if NODE1 is stuck-at-0, the fault was

detected on output ADR0 at time 250.0ns. Conversely, if NODE1 is stuck-at-1, the fault was not

detected. The rest of the entries are similar, except the last one which indicates that if NODE3

is stuck-at-1, the fault was detected as a change from (or to) an X value on output ADR3, at

time 600.0ns.

Detect 0 NODE1 [250.0] ADR0

Fail 1 NODE1

Detect 0 NODE2 [450.0] ADR1

Detect 1 NODE2 [350.0] ADR2

Fail 0 NODE3

Maybe 1 NODE3 [600.0] ADR3

— —

6 faults

4 detected (1 probably)

2 undetected

fault coverage: 66.66% (83.33%)

4

