Corner Stitching:
A Data Structuring Technique for
VLSI Layout Tools

John K. Qusterhout
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720
415-842-0865
ARPAnet address: ousterhout®berkeley

Abstract

Corner stitching is a technique for representing rectangular two-dimensional
objects. It appears to be especially well suited for interactive editing sys-
tems for VLSI layouts. The data structure has two important features: first,
empty space is represented explicitly; and second, rectangular areas are
stitched together at their corners like a patchwork quilt. This organization
results in fast algorithms (linear time or better) for searching, creation,
deletion, stretching, and compaction. The algorithms are presented under a
simplified model of VLSI circuits, and the storage requirements of the struc-
ture are discussed. Measurements indicate that corner stitching requires
approximately three times as much memory space as the simplest possible
representation.

The work described here was supported in part by the Defense Advenced Research Projects
Agency (DoD), ARPA Order No. 3803, monitored by the Navel Electronic System Command under
Contract No. N0O0039-81-K-0251

Corner Stitching December 13, 1982

1. Introduction

Interactive layout tools for integrated circuits place special burdens on
their internal data structures. The data structures must be able to deal with
large amounts of information (one-half million or more geometrical elements
in current layouts [8]) while providing instantaneous response to the
designer. As the complexity of designs increases, tools must give more and
more powerful agsistance to the designer in such areas as routing and valida-
tion. To support these intelligent tools, the underlying data structures must
provide fast geometrical operations, such as locating neighbors for stretch-
ing and compaction, and locating empty space for routing. The data struc-
tures must also permit fast incremental modification so that they can be

used in interactive systems.

Corner stitching is a data structure that meets these needs. It is lim-
ited to designs with Manbattan features (horizontal and vertical edges only)
but within that framework it provides a variety of powerful operations, such
as neighbor-finding, stretching, compaction, and channel-finding. The algo-
rithms for the operations depend only on local information (the objects in
the immediate vicinity of the operation). Their running times are generally
linear in the number of nearby objects; in pathological cases (which are
extremely unlikely for actual layouts) the running times may be linear in the
overall design size. Corner stitching is especially effective when the objects
are relatively uniform in size, as is the case for low-level mask features. it
also works well when there is variation in feature size, e.g. hierarchical lay-

outs containing large subcells and small wires to connect them.

Corner stitching permits modifications to the database to be made

quickly, since only local information is used in making the updates. Most

Corner Stitching December 13, 1982

existing systems that provide powerful operations such as routing and com-
paction do not provide inexpensive updates: small changes to the database
can result in large amounts of recomputation. Corner stitching's combina-
tion of powerful operations and easy updates means that many powerful tools
previously available only in "batch” mode can now be embedded in interac-

tive systems.

2. A Simplified Model of Y1LSI Layouts

A VLSI layout is normally specified as a hierarchical collection of cells,
where each cell contains geometrical shapes on several mask layers and
pointers to subcells. As a convenience in presenting the data structure and
algorithms, a simplified model will be used in this paper. Only a single mask
layer will be considered, and hierarchy will not be considered. For this
paper, | define a "circuit” to be a collection of reétangles. There is a single
design rule in the model: rectangles may not overlap. The simplified model
makes it easier to present the data structure and algorithms. Section 8
discusses how the simplified model might be generalized to handle real VLSI

layouts.

3. Existing Mechanisms

The simplest possible technique for representing rectangles is just to
keep all of them in one large list. This technique is used in the Caesar sys-
tem [5]: each cell is represented by a list of rectangles for each of the mask
layers. Even though operations such as neighbor-finding require entire lists

to be searched, the structure works well in Caesar for two reasons. First,

large layouts are broken down hierarchically into many small cells; only the

Corner Stitching December 13, 1982

top-most cells in the hierarchy ever contain more than a few hundred rec-
tangles or a few children [6]. Second, Caesar provides only very simple
operations like painting and erasing. More complex functions such as design
rule checking and compaction could not be implemented efliciently using

rectangle lists.

The most popular data structures for VLSI are based on bins [1]. In bin-
based systems, an imaginary square grid divides the area of the circuit into
bins, as in Figure 1. All of the rectangles intersecting a particular bin are
linked together, and a two-dimensional array is used to locate the lists for
different bins. The rectangles in a given area can be located quickly by
indexing into the array and searching the (short) lists of relevant bins. The
bin size is chosen as a tradeoff between time and space: as bins get larger, it
takes longer to search the lists in each bin; as bins get smaller, rectangles

begin to overlap several bins and hence occupy space on several lists.

1. In bin-based data structures, the circuit is divided by an imaginary
grid, and all the rectangles intersecting a subarea are linked together.

Corner Stitching December 13, 1982

Bin structures are most effective when rectangles have nearly uniform
size and spatial distributions; they suffer from space and/or time
inefficiencies when these conditions are not met. A pathological caseis a cell
with a few large child cells and many small rectangles to interconnect them:
if bins are small, then there will be many empty bins in the large areas of the
subcells, resulting in wasted space for the bins; if bins are large, then the
bins in the wiring area will have many rectangles, resulting in slow searches.
Hierarchical bin structures [3] have recently been proposed as a solution to
the problems of non-uniformity. Although bins provide for a quick location of
all objects in an area, they do not directly embody the notion of nearness.
To find the nearest object to a given one, it is necessary to search adjacent
bins, working out from the object in a spiral fashion. Furthermore, bin struc-
tures do not indicate which areas of the chip are empty; empty areas must
be reconstructed by scanning the bins. The need constantly to scan bins to
recreate information makes bin structures clumsy at best, and ineflicient at

worst, especially for operations such as compaction and stretching.

A third class of data structures is based on neighbor pointers. In this

technique, each rectangle contains pointers to rectangles that are adjacent

L A |

.......... h '
D T T E E I
.......... ' |

B

Figure 2. Neighbor pointers can be used to indicate horizontal or vertical ad-
jacency. However, if D is moved right, it is hard to update the vertical
pointers without scanning the entire database.

Corner Stitching December 13, 1982

to it in x and y. See Figure 2. Neighbor pointers are a popular data struc-
ture for compaction programs such as Cabbage [2]. since they provide infor-
mation about relationships between objects. For example, a simple graph

traversal can be used to determine the minimum feasible width of a cell.

Neighbor pointers have two drawbacks. First, modifications to the
structure generally require all the pointers to be recomputed. For example,
if an object is moved horizontally as in Figure 2, vertical pointers may be
invalidated. There is no simple way to correct the vertical pointers short of
scanning the entire database. The second problem with neighbor pointers is
that they don't provide much assistance in locating empty space for routing,
since only the occupied space is represented explicitly. For these two rea-
sons, neighbor pointers do not appear to be well-suited to interactive sys-

tems or those that provide routing aids.

Figure 3. An example of tiles in a corner stitched data structure. Solid tiles
are represented with dark lines, space tiles with dotted lines. The entire
area of the circuit is covered with tiles. Space tiles are made as wide as pos-
sible.

Corner Stitching December 13, 1982

4. Corner Stitching

Corner stitching arose from a consideration of the weaknesses of the
above mechansisms, and has two features that distinguish it from them. The
first important feature is that all space, both empty and occupied, is
represented explicitly in the database. The second feature is a novel way of
linking together the objects at their corners. These corner stifches permit
easy modification of the database, and lead to efficient implementations for a

variety of operations.

Figure 3 shows four objects represented in the corner stitching scheme.
The picture resembles a mosaic with rectangular tiles of two types, space
and solid. Tiles contain their lower and left edges, but not their upper or
right edges, so every point in the plane is present in exactly one tile. The

tiles must be rectangles with sides parallel to the axes.

The space tiles are organized as mazimal horizontal strips. This means
that no space tile has other space tiles immediately to its right or left. When
modifying the database, adjacent space tiles that are horizontally adjacent
must be split into shorter tiles and then joined into maximal strips, as shown
in Figure 4. After making sure that space tiles are as wide as possible, verti-
cally adjacent tiles can be merged together if they have the same horizontal
span. The representation of space is of no consequence to the VLSI layout or
to the designer, and will not even be visible in real systems. However, the
maximal horizontal sirip representation is crucial to the space and time
efliciency of the tools, as we shall see in Sections 5 and 6. Among its other
properties, the horizontal strip representation is unique: there i§ one and

only one decomposition of space for each arrangement of solid tiles.

Corner Stitching December 13, 1982

(a) (b)

{c) (a)

Figure 4. No space tile may have another space tile to its immediate right or
left. In this example, tiles A and B in (a) must be split into the shorter tiles
of (b), then merged together into wide strips in (c), and finally merged verti-
cally in (d).

Tiles are linked by a set of pointers at their corners, called corner
stitches. Each tile contains eight stitches, two at each corner, as illustrated
in Figure 5. By linking together all adjacent tiles, corner stitches provide

something equivalent to neighbor pointers.

The tile/stitch representation has several attractive features, which will
be illustrated in the sections that follow. First, the mechanism combines
both horizontal and vertical information in a single structure. The space

tiles provide a form of registration between the horizontal and vertical infor-

mation and make it easy to keep all the pointers up to date as the circuit is

-7 -

Corner Stitching December 13, 1882

1t rt
i !
tleT T ir
bl+t, ,T*br
v v
1b rb

Figure 5. Each tile is connected to its neighbors by eight pointers called
corner stitches. The name of each stitch indicates the location of the stitch
(Ib means left bottom corner), and the second letter indicates the direction
in which the stitch points. Thus Ib refers to the pointer at the left edge of
the tile pointing out its bottom.

modified. Because the space tiles may vary in size {(as opposed to fixed-size
bins), the structure adapts naturally to variations in the size of the solid
tiles. The maximal horizontal strip representation of space results in clean
upper bounds on the number of space tiles and also on the complexity of the
algorithms. All tiles have the same number of pointers to other tiles, which

simplifies the database management.

5. Algorithms

This section presents algorithms for manipulating the tiles and corner
stitches. The algorithms are presented in simplified form here; a few of them
are described in more detail in the appendices. The most important attri-
bute of all the algorithms is their locality: each algorithm depends only on
information in the immediate vicinity of the operation. None of the algo-
rithms has an average running time any worse than linear in the number of
tiles in the affected area. One can devise pathological cases where the algo-
rithms require time linear in the overall layout size, but in practice (particu-

larly for VLSI layouts, which tend to be densely packed) their running times

Corner Stitching December 13, 1982

will be small and nearly independent of the size of the layout.

In discussing the performance of the algorithms, the corner stitches
provide a good unit of measure. The complexity of the algorithms will be dis-
cussed in terms of the number of stitches that must be traversed (or, alter-
natively, the number of tiles that must be visited) and/or the number of

stitches that must be modified.

5.1. Point Finding

Several different kinds of searching are facilitated by corner stitching.
One of the most common operations is to find the tile at a given (x,y) loca-
tion. Figure 8 illustrates how this can be done with corner stitching. The

algorithm iterates in x and y, starting from any given tile in the database:

Y = - iy — =i

I’
-,

.
-,

-

SR

Start

Figure 6. To locate the tile containing a given point, alternate between
up/down and left/right motions.

Corner Stitching December 13, 1982

1. First move up or down along the left edges of tiles (following 1t and 1b
stitches) until a tile is found whose vertical range contains the desired
point.

2. Then move left or right along the bottom edges of tiles (following br
and bl stitches) until a tile is found whose horizontal range contains the
desired point.

3. Since the horizontal motion may have caused a vertical misalignment,
steps 1 and 2 may have to be iterated several times to locate the tile
containing the point.

In the worst case, this algorithm may require every tile in the entire
structure to be searched (this happens, for example, if all the tiles in the
structure are in a single column or row). Fortunately, the average case
behavior is much better than this. If there are a total of N space or solid
tiles and they are of relatively uniform size, then on the order of VN tiles
will be passed through in the average case. For a layout containing a million
tiles (which is typical of the fully expanded mask sets of current VLSI cir-

cuits) this means a few thousand tiles will have to be touched.

In interactive systems, there is a simple way to reduce the time spent in
searches of this sort: keep around a pointer to any tile in the approximate
area where the designer is working. When a large design is being edited, the
designer’s attention is generally focussed on a small piece of the design (e.g.
a piece that can be viewed comfortably on a graphic device). If a tile in this
area is remembered for reference, then search time depends only on how

much is on the screen, not how large the design is.

5.2. Neighbor Finding

Another common searching operation is neighbor finding: find all the
tiles that touch one side of a given tile. Neighbor finding is useful for design
rule checking, compaction, and tracing out connected nets. Figure 7 illus-

trates how to find all the tiles that touch the right side of a given tile:

-10 -

Corner Stitching December 13, 1982

Figure 7. The corner stitches provide a simple way to find all the tiles that
touch one side of a given tile.

1. Follow the tr stitch of the starting tile to find its topmost right neigh-
bor.

2. Then trace down through 1b stitches until the bottommost neighbor is
found (the bottommost neighbor is the one pointed to by the br stitch of
the starting tile).

Similar algorithms can be devised to search each of the other sides. The
time for this search is linear in the number of neighbors. As shown in Appen-
dix A, in the average case each tile has one or two neighbors along each side.
In layouts where tile sizes vary greatly, the number of neighbors will, on

average, be proportional to the length of the side.

5.3. Area Searches

A third form of searching is to see if there are any solid tiles within a
given area. This can be accomplished in the following manner using corner

stitches (see Figure 8):

1. Use the point-finding algorithm to locate the tile containing the
lower-left corner of the area of interest.

2. See if the tile is solid. If not, it must be a space tile. See if its right
edge is within the area of interest. If so, either it is the edge of the lay-
out or the edge of a solid tile.

-11 -

Corner Stitching December 13, 1982

Figure 8. To search a rectangular area for a solid tile, work upwards along
the left edge of the area. Each tile along the edge must be either a) a solid
tile, b) a space tile that spans the entire area, or c¢) a space tile with a solid
tile just to its right.

3. If a solid tile was found in step 2, then the search is complete. If no
solid tile was found, then move upwards to the next tile touching the left
edge of the area of interest. This can be done either by invoking the
point-finding algorithm, or by traversing the It stitch upwards and then
traversing br stitches right until the desired tile is found.

4. Repeat steps 2 and 3 until either a solid tile is found or the top of the
area of interest is reached.

As with the other operations, the time necessary for this operation depends
only on local features: the number of tiles in and around the area of
interest. The cost can be measured by counting the number of stitches that
must be traversed. The number of iterations through the algorithm will be
proportional to the height of the area (assuming, as always, a relatively uni-
form size distribution). In each iteration, it may be necessary to traverse
one stitch in step 2. In addition, step 3 will cause a mislagnment of about
1/2 tile in the average case. Thus, the total running time is linear in the
height of the search area, and does not depend at all on the width of the
search area. In pathoclogical cases this algorithm could have rt_;nning time
proportional to the total number of tiles in the layout (this happens when

there is severe misalignment in step 3).

-12-

Corner Stitching December 13, 1982

5.4. Create and Delete

Before creating a new solid tile, we must check to see that there are no
existing solid tiles in the desired area of the new tile. The area search algo-
rithm can check this. The second step is to insert the tile into the data

structure, clipping and merging space tiles and updating corner stitches as

PR S R
ORI RS (S S

L - - - = - —

(a) (b)

PRV S S

(c) (d)

Figare 9. Inserting a new solid tile into the data structure. (a) shows the
desired location of the new tile. In (b) the space tiles containing the top and
bottom edges of the new solid tile are split. In (c) and (d) the area of the new
tile is traversed from bottom to top, splitting and joining space tiles on either
side and pointing their stitches at the new solid tile.

-13 -

Corner Stitching December 13. 1982

shown in Figure 9. The insertion algorithm is as follows:

1. Find the space tile containing the top edge of the area to be occupied
by the new tile (because of the strip property, a single space tile must
contain the entire edge).

2. Split the top space tile along a horizontal line into a piece entirely
above the new tile and a piece overlapping the new tile. Update corner
stitches in the tiles adjoining the new tile.

3. Find the space tile containing the bottom edge of the new solid tile,
split it in the same fashion, and update stitches around it.

4. Work up the sides of the new tile. Each space tile must be split into
two space tiles, one to the left of the new solid tile and one to the right.
This splitting may make it possible to merge space tiles vertically:
merge whenever possible. After each split or merge, stitches must be
updated in adjoining tiles.

The speed of the creation algorithm is determined by the cost of splitting
and merging the space tiles that cross the area. The number of space tiles
depends on the number of solid tiles in the left and right shadows of the new
tile. One can devise cases where the number of space tiles is arbitrarily high,
but in practice it can be be expected to be proportional to the relative height
of the new tile in comparison to the tiles around it. Appendix B discusses the
cost of splitting and merging tiles: in the average case it is constant; for
very large tiles it is proportional to the circumference of the tile. This
means that in the worst possible case the cost of creating a new tile could be
proportional to the total number of tiles in the layout. In the average case
the running time will be proportional to the height of the new tile and

independent of its width.

Deletion is performed in the inverse manner of creation. First, the solid
tile to be deleted is turned into a space tile. Then the space tile must be
split along horizontal lines so it can be merged with neighboring space tiles
into maximal horizontal strips. It may also be necessary to split s§me of the
adjacent space tiles to form maximal strips. After making maximal strips, it

may be possible to merge space tiles vertically at the top and bottom of the

-14 -

Corner Stitching December 13, 1982

space once occupied by the solid tile. Appendix C discusses the deletion
algorithm in detail. As with tile creation, the average running time will be
linear in the height of the deleted tile, with worst case time linear in the total

number of tiles in the layout.

5.5. Directed Area Enumeration

For many applications, such as compaction and layout rule checking, it
is useful to enumerate all the tiles in a given area, i.e. to "visit" each tile
exactly once. Furthermore, it is often useful to do this in a particular direc-
tion. This section presents an algorithm wherein each tile is visited only
after all the tiles to its left have been visited. I call such an enumeration a
directed enumeration. Corner stitching makes this a linear time operation,
as illustrated by the following algorithm for left-to-right directed enumera-

tion. Figure 10 shows the resulting enumeration order for an example case.

jmm- = - = --#-q-----

Figure 10. An example of directed enumeration. When doing a left-to-right
enumeration of the dashed area, the tiles will be enumerated in order of
their numbers.

- 15 -

Corner Stitching December 13, 1982

1. As for the area searching algorithm, use the point finding algorithm to
locate the tile at the bottom left corner of the area of interest. Then
step up through all the tiles along the left edge, using the same tech-
nique as in area searching.

2. For each tile found in step 1, enumerate it recursively, as indicated in
steps 3 through 7.

3. Enumerate the tile (this will generally involve some application-
specific processing).

4. If the right edge of the tile is outside of the search area, then return.

5. Otherwise, use the neighbor finding algorithm to locate all the tiles
that touch the right side of the current tile and intersect the search
area.

8. For each neighbor, if the top left corner of the neighbor touches the
current tile then enumerate the neighbor recursively (in Figure 10, this
occurs when tile 1 is the current tile and tile 2 is the neighbor).

7. Or, if the top edge of the search area cuts both the current tile and
the neighbor then enumerate the neighbor recursively (in Figure 10,
this occurs when tile 8 is the current tile and tile 9 is the neighbor).

The algorithm for directed enumeration provides the key to snowplowing
and compaction. Its running time is linear in the number of tiles intersect-
ing the search area. This can be shown by the following arguments. The
checks in steps 8 and 7 guarantee that each tile is enumerated exactly once.
However, a tile may be checked several times before satisfying the checks in
step B8 or 7: it will be checked once for each tile that touches its left side.
The total running time of the algorithm is thus proportional to the total
number of adjacencies within the search area. Appendix A uses the proper-
ties of planar graphs to prove that the number of adjacencies must be linear

in the number of tiles.

The algorithm for directed enumeration does not depend on the fact
that space tiles are maximal horizontal strips. In fact, the basic algorithm
does not even distinguish between solid and space tiles. It is possible to dev-
ise analogous algorithms for each of the other three directions,_‘all of which

have linear running time.

-18 -

Corner Stitching December 13, 1982

5.8. Snowplow

Snowplow is an example of a useful operation that cannot easily be
implemented with most existing data structures. When one piece of a large

design is moved, it would be helpful if other pieces of the design lying in the

(e}

®)

Figure 11. An example of snowplowing: (a) determine the area to be swept
out by the moticn; (b) recursively move all solid tiles out of this area; (c)
move the original tile.

-17 -

Corner Stitching December 13, 1982

path of motion could be moved as well, as if the original piece were a
snowplow. Ideally, such a motion should stretch or shrink the design while
maintaining design rules and connectivity. Snowplowing can be accom-

plished with corner stitching in the following way:

1. Determine the rectangular area that will be swept out by the motion
of the original tile (see Figure 11).

2. Use the area finding algorithm to see if there are any solid tiles in the
plow area. If a solid tile is found, invoke the snowplow algorithm recur-
sively to move the tile out of the snowplow area. Repeat this step until
no solid tiles are found.

3. Delete the original tile from its old location and create it at the new
position.

In the worst case, this algorithm could require on the order of N? tile
moves to move N tiles out of the snowplow area (this happens if each recur-
sive move requires all the tiles that have been previously moved to be moved
still farther). A better algorithm can be achieved by using a form of directed
enumeration. The enumeration is done in the direction of the snowplow, so
that a tile is visited only after all tiles that affect its final location have also
been visited. Because the actual algorithm is somewhat complicated, it is
presented separately in Appendix D. The running time of the directed algo-
rithm is linear in the number of tiles in the snowplow area in the average

case, and has worst case running time linear in the overall layout size.

5.7. Compaction

Most existing algorithms for compaction require N? time in the worst
case for a layout containing N elements, and have been empirically observed
to have average running time close to N*? [7]. With corner stitching, com-
paction is linear in the size of the layout. Compaction in a single direction

can be achieved in a simple way by snowplowing a large tile across the lay-

-18 -

Corner Stitching December 13, 1982

(a)

(v)

Figure 12. To compact a layout vertically, snowplow a large additional tile
(cross-hatched in the figure) across the layout: (a) shows the configuration
before the snowplow, and (b) shows the compacted configuration afterwards.
The tile acts like a broom and compacts as it sweeps.

out, as shown in Figure 12. The linear running time for snowplowing guaran-

tees that this form of compaction will also be linear in the size of the layout.

There are two keys to the speed of compaction in corner stitching. The
first, and most important, is that all the dependencies between tiles are
maintained dynamically. In other compaction systems, the dependencies

must be reconstructed after each change to the layout; the algorithms for

-19 -

Corner Stitching December 13, 1982

generating dependencies limit the overall speed of compaction. The second
key is that the layout is planar. This means that the number of adjacencies
is linear in the number of tiles, and hence the whole layout can be scanned in

time proportional to the number of tiles.

5.8. Channel Finding

Channel information is constantly available in the form of the space
tiles. The corner stitches make it possible to find connected channels and
thereby trace out signal paths. Of course, some routers may prefer a
different representation of channels than maximal strips; if this is the case,
then conversion will be necessary to cast the space tiles into a form suitable

for routing.

8. Space Requirements

Because of the enormous size of VLSI designs, a data structure used for
VLS] CAD must be space efficient if it is to be effective. For example, even
the hierarchical representation of a 45000 transistor chip requires about 1.5
million bytes of main memory in Caesar. Corner stitching requires more
information to be kept in the data structure than systems like Caesar. Table

I compares corner stitching to the linked-list scheme of Caesar. Each solid

Caesar Corner Stitching | Optimized CS
: XY, XY X..Y..X,,¥Y X..y
Coordinates (is f)ygesj (iB llayées (8 blytés)
: 1 link 8 stitches 4 stitches
Pointers (4 bytes) (32 bytes) (16 bytes)
Total 20 bytes 48 bytes 24 bytes

Table I. In the worst case, corner stitching requires more than -twice as
much storage per tile as simpler systems. An optimized version of corner
stitching needs only four more bytes per tile than Caesar.

-20 -

Corner Stitching December 13, 1982

tile requires 48 bytes using corner stitching, compared to only 20 bytes in
Caesar. Furthermore, Caesar and other systems do not represent empty
space, whereas there may be many space tiles in corner stitching. If there
are many space tiles, then corner stitching will require too much space to be
practical. The following subsections show how to reduce the memory needed

for each tile and prove an upper limit on the number of space tiles required.

8.1. Reducing the Storage Requirements

There are two time-space tradeoffs that can be made to reduce the
number of bytes needed to represent each tile. First, we need only store one
coordinate pair for each tile. In the corner stitch repesentation, only the
lower-left x- and y-coordinates need to be stored: to find out the upper x- or
y-coordinate, traverse a corner stitch and look at the lower-left coordinates
of a neighoring tile. This requires an extra pointer traversal each time an

upper coordinate is used, but saves 8 bytes per tile.

It is also unnecessary to have eight corner stitches per tile. All of the
operations supported by the eight stitch scheme will work with only four
stitches from two diagonally opposite corners, as shown in Figure 13. With
the four stitches shown in Figure 13, it is possible to reconstruct all the other
stitches. Consider the It stitch of a tile, which is not present in the scheme
of Figure 13. It can be generated by traversing the rt stitch and then follow-
ing bl stitches until a tile is found whose left edge is no further right than the
left edge of the starting tile. The time required for this operation depends on

the number of neighbors a tile has.

In practice, the above space savings do not cost much tirne_‘at all. The
lack of some pointers tends to favor certain directions for operations, but

the algorithms can all be recoded to operate in the favored directions. In

-21-

Corner Stitching December 13, 1982

T tr

bl+T,

Figure 13. Four corner stitches, two at each of two diagonally opposite
corners, are sufficient to support the algorithms.

fact, the code is much simpler in the reduced case (and may even be faster)
because there are only half as many pointers and coordinates to modify. The
only algorithm that required substantial changes is the algorithm presented
in Appendix C for tile deletion. As a result of both space reductions, a tile

requires 24 bytes using corner stitching, compared to 20 in Caesar.

8.2. Worst-Case Requirements

If there are N solid tiles in a circuit, then corner stitching will never
result in more than 3N+1 space tiles. Furthermore, the horizontal strip
representation is at least as efficient (in the worst case) as any other
rectangle-based representation of space. In tightly-packed designs, which

are typical in VLS], the number of space tiles is much less than 3N+1.

The proof of the 3N+1 upper limit is due to Carlo Séquin. To see that no
more than 3N+1 space tiles are needed for N solid tiles, place the solid tiles
one at a time in order from right to left as shown in Figure 14. Initially there
is a single space tile. When each solid tile is placed, it can result irr no more

than 3 new space tiles: the top and bottom edges may each cause a space

tile to be split, and a new space tile will be created in the shadow to the left

-22.

Corner Stitching December 13, 1982

New

New

New

() ®)

New

New

()

Figure 14. (a) and (b) show that if solid tiles are inserted in order from left
to right, each tile causes no more than 3 additional space tiles to be created.
However, if edges of the new tile align with edges of old tiles, as in (c), less
than 3 additional space tiles will be required.

of the solid tile. Because we place the solid tiles in order, there can be no
solid tiles in the shadow. This means that only a single space tile will be
created there. Although the solid tiles were placed in a particular order to
demonstrate the 3N+1 limit, the final configuration is independent of the
order in which the tiles are placed (the horizontal strip property guarantees

this). Thus the result is valid regardless of the order of solid tile creation.

-23-

Corner Stitching December 13, 1582

(a) (b)

Figure 15. In pathological situations where no two solid tiles have colinear
edges, at least 3N+1 space tiles must be used, even in representations other
than horizontal strips.

There are many other ways to organize space tiles besides maximal hor-
izontal strips. However, in the worst case no representation of space can use
less than 3N+1 space tiles. This worst case occurs when no two solid tiles

have colinear edges. Figure 15 shows one such situation.

Somewhat less than 3N+1 space tiles are needed for actual VLS] applica-
tions. Fewer space tiles are needed whenever edges of neighboring solid tiles
align. For example, Figure 14c shows a situation where the placement of a
solid tile only adds 2 space tiles instead of 3. In integrated circuits the solid
tiles must touch each other to achieve electrical connectivity, so the number
of space tiles actually needed is much less than 3N. Table II shows sample
data gathered from three pieces of layout by building corner stitched data
structures for individual mask layers. On the average, 1.5 space tiles are
required per solid tile. This means that the total storage required for

geometry in corner stitching will be about three times as great as in systems

-24 -

Corner Stitching December 13, 1982

like Caesar. This result applies even when the mask layers are sparse, as in

the global routing example.

7. An Implementation

A simple program was written to test the basic viability of corner stitch-
ing. It implements all of the algorithms described above for the simplified
assumptions of space and solid tiles. About 1100 lines of C code were
required. The code is embedded in an interactive system: using a tablet and
color graphics display, tiles can be created, deleted, and snowplowed, and
horizontal and vertical compaction can be invoked. For the small layouts
used to test the program (50 or fewer solid tiles) response is instantaneous

for all operations.

B. Extensions for Real V1SI

The scheme presented here must be extended in several ways before it
will be practical for real integrated circuits. This section presents some of

the important issues and discusses a few possible solutions. Work is

Layout Layer Solid Tiles Space Tiles Space/Solid

Global Polysilicon 2736 4071 1.5

Routing | Diffusion 1250 1918 1.5
Metal 2305 3818 1.6

ALU Polysilicon 809 1223 1.5
Diffusion 1284 1590 1.2
Metal 495 853 1.3

Register | Polysilicon 236 305 1.3

File Diffusion 376 433 1.2
Metal 70 113 1.8

Table II. For actual layouts, corner stitching requires about 1.5 space tiles
for each solid tile. The mask layers were measured separately. The first case
consists of all the global routing for the RISC I microprocessor (i.e. all the
rectangles in the topmost cell of the hierarchy). The second and third cases
consist of areas extracted from ancther microprocessor.

-25.

Corner Stitching December 13, 1982

currently underway to construct a viable VLSI layout tool for nMOS and CMOS

based on corner stitching.

First, it must be possible to have multiple mask layers. There are
several ways of accomplishing this. One alternative is to permit many
different types of solid tiles, one type for each possible combination of mask
layers. Unfortunately, this scheme will result in enormous numbers of tiny
tiles in places where several mask layers cross each other. Another alterna-
tive is to keep a separate corner stitched structure for each mask layer.
This scheme will be relatively space eflicient, but will require frequent cross-
registration between planes during operations such as snowplowing and
design rule checking. A third alternative is to use a combination of the above
two schemes. Layers that interact strongly, such as polysilicon and diffusion,
can be kept together in a single structure with different types of solid tiles
for each layer combinat:ion. Layers that interact weakly, such as polysilicon
and metal, can be kept in different structures. Registration between struc-
tures need only occur where there are contacts. Under this scheme, the
corner-stitched representation corresponds very closely to the electrical cir-
cuit, since the transistors (polysilicon crossing diffusion) are represented by
tiles of a special type. In addition, each corner-stitched structure can be

design-rule checked independently.

A practical implementation of corner stitching must also be able to han-
dle more complex layout rules than the simple non-overlap rule used here.
The paradigm for rules checking should be chosen so that it works well both
for simple design rule checking and for the snowplow and compaction opera-
tions. The implementation of snowplow must be modified so that it maintains

the circuit connectivity as well as the design rules. This means that some

- 28 -

Corner Stitching December 13, 1882

tiles (those corresponding to wires) will be stretched or shrunk rather than
just moved. Other tiles, such as those corresponding to transistors or con-

tacts, cannot be stretched or shrunk without changing the circuit behavior.

Lastly, a practical implementation of corner stitching must support
hierarchical designs. This can be accomplished by keeping separate corner-

stitched structures for each cell.

9. Conclusion

Corner stitching is a powerful technique for representing geometrical
data. Its two most important features are a) it represents empty space
explicitly, and b) it links together tiles of various types at their corners.
These two features make it possible to implement a variety of important
operations that operate purely locally. The efficiency of the algorithms
depends only on local information and not on the overall circuit size. The
database can be modified incrementally, so that one portion of the design
can be changed without invalidating the pointer information of any other
piece of the design. Corner stitching is effective both for densely packed and

for sparse circuits.

There are two potential drawbacks of the mechanism. The first draw-
back is that it requires approximately 3 times as much storage as simple
mechanisms. Fortunately, designers tend to focus their attention on a small
portion of a layout at any given time; since corner stitching uses only local
information, it should work quite effectively in a demand-paged environment.
The second drawback to corner stitching is that it requires designs to be
Manhattan. This may be considered a serious restriction by some designers,

but seems to be gaining more and more acceptance as designs reach very

-27-

Corner Stitching December 13, 18982

large degrees of integration.

10. Acknowledgements

Michael Arnold, Carlo Séquin, David Ungar, and David Wallace all took
part in the discussions that led to the formulation of corner stitching.
Séquin developed the proof that 3N+1 space tiles are always sufficient in a
design with N solid tiles. Leo Guibas, Dave Patterson, Alberto Sangiovanni-
Vincentelli, and Carlo Séquin all provided helpful comments on an early draft

of the paper.

11. References

[1] Bentley, J.L. and Friedman, J.H. "A Survey of Algorithms and Data Struc-
tures for Range Searching.” ACM Computing Surveys, Vol. 11, No. 4,

1979.

[2] Hsueh, M.Y. Symbolic Layout and Compaction of Integrated Circuils.
Technical Report, University of California, Berkeley, UCB/ERL/M79/80,

December 1979.

[3] Kedem, G. "The Quad-CIF Tree: A Data Structure for Hierarchical On-
Line Algorithms.” Proc. 18th Design Automation Conference, 1982, pp.

352-357.

[4] Keller, K.H. and Newton, A.R. "KIC2: A Low Cost, Interactive Editor for
Integrated Circuit Design.” Digest of Papers for COMPCON Spring 1982,
pp. 305-308.

[5] Ousterhout, J.K. "Caesar: An Interactive Editor for VLSI". WLSI Design,

Vol. II, No. 4, Fourth Quarter 1981, pp. 34-38.

-28 -

Corner Stitching December 13, 1982

[8] Ousterhout, J.K. and Ungar, D.M. '"Measurements of a VLSI Design.” Proc.

19th Design Automation Conference, 1982, pp. 903-508.

[7] Sangiovanni-Vincentelli, A. Private communication.

Appendix A: Adjacencies

The running time for several of the algorithms depends on the number
of neighbors an individual tile has. One can construct situations where a tile
has an arbitrarily large number of neighbors, so it is not possible to state any
absolute upper bounds. However, graph theory can be used to determine the
average number of neighbors. In any connected planar graph,

n—e+f =1
where n is the number of nodes, e is the number of edges, and f is the
number of faces contained by the edges. A face corresponds to a tile, a node
to a corner of a tile, and an edge to a distinct adjacency between two tiles.
For T tiles, f =7T. The number of distinct nodes n can be at most 47T, but in
the interior of the tile structure each corner of one tile must coincide with at
least one corner of another tile (a "T" structure). Thus, n<27T and the total
number of adjacencies is
e =n+f+1<3T+1

Note that at the outside of the structure there may be corners that don’t
coincide with other corners, but for each of these there is also as least one
edge that doesn't represent an adjacency (because there is no tile on the

other side). Hence the 3T +1 upper limit is not affected.

The 37+1 limit counts each adjacency only once for the two tiles that
are adjacent. To compute the number of neighbors per tile, the ﬁgure must

be doubled. This means that on the average, an individual tile will have about

-29-

Corner Stitching December 13, 1982

six neighbors, or about one or two on each side. This is regardless of the
arrangement of tiles. Of course, if there are many tiles of different sizes, the
large tiles may have many more than six neighbors. The average number of
neighbors of a tile in a situation like this will be roughly proporational to the

perimeter of the tile, which is less than linear in its area.

Appendix B: Splitting and Merging
This section discusses the cost of splitting one tile into two adjacent
tiles, or merging two adjacent tiles into a single tile. A tile can be split into

two tiles as follows:

1. Make an exact copy of the original tile.

2. Update the coordinates of each tile to reflect the split, and set the
tiles’ corner stitches to refer to each other.

3. Update the corner stitches in tiles that are now adjacent to the new
tile. This done by chasing the stitches around three sides of the original
tile and updating the stitches that must point to the new tile.

The algorithm for merging two adjacent tiles into a single larger tile is simi-

lar: stitches must be updated along three sides of the new larger tile.

The cost of each algorithm consists of constant factors (copying a tile or
changing an x or y coordinate) and the search of neighbors on three sides.
Appendix A showed that the number of neighbors was constant when aver-
aged across a whole design, but increases for those tiles that are much
larger than their neighbors. In this case the average number of neighbors
will be approximately proportional to the perimeter of the tile. Thus the cost
of a split or merge is constant if the tile being split or merged is about the
same size as its neighbors. If the tile is much larger than its neighbors, then
the cost increases in proportion to the tile's perimeter, which is less than

linear in its area.

-10 -

Corner Stitching December 13, 1882

Tile i Tile
being : being
deleted deleted
(2) {b)
e esmeeemmeae e taes : —
Tile Tile
being being
deleted H : deleted

{e) @

Figure 16. One iteration of the tile deletion algorithm: (a) corresponds to the
situation at the beginning of step 3, (b) occurs after neighbors have been
split, (c) occurs after the neighbors have been joined, and (d) occurs when
the deleted tile is split and the algorithm is about to re-iterate.

Appendix C: The Deletion Algorithm
The complete algorithm for deleting a solid tile is presented below. The
algorithm assumes that there are only four stitches per tile (this is the only

one of the algorithms that is affected by the elimination of four stitches).

Figure 18 illustrates one step in the action of the algorithm.

-31-

Corner Stitching December 13, 1982

1. Change the type of the deleted tile from solid to space.

2. Scan the right edge of the tile from top to bottom and generate a list
of neighbors ordered from bottom to top. This is done in order to avoid
rescanning all the right neighbors in each pass through step 3. In 8-
stitch implementations this step is not necessary.

3. Start at the bottom edge of the deleted tile. Use the corner stitches
to find the tile just to the left of the edge and the list from step 2 to find
the tile just to the right of the edge.

4. If the tile to the left of the edge is a space tile and spans the edge,
then split it into two space tiles, one at and above the edge and one
below it. Do the same thing for the tile to the left of the edge. Figure
18b shows the result of this operation.

5. If the tile just below the left end of the edge is a space tile (this tile is
found by following the 1b stitch, and is always a space tile except for the
first iteration), merge it with its neighbors to the left or right if they are
also space tiles. Figure 168c show the result of this operation.

8. During the first iteration it is also necessary to locate the tile just
underneath the right end of the edge (follow the Ib stitch followed by as
many tr stitches as necessary) and merge it with its neighbor to the
right, if possible.

7. Check the tile just below the left end of the edge to see if it can be
merged vertically with the tile just below it (a merge can only occur dur-
ing the very first iteration).

8. If the edge is the top of the deleted tile, then go to step 9. Otherwise,
determine whether the left or right neighbor of the tile has the lowest
upper edge. Split the deleted tile at this point, and repeat steps 3
through 8 with the upper portion of this tile. Figure 16d shows the
result of the split.

9. When the top of the deleted tile is reached, check to see if the space
tile at the top can be merged with the tile just above it, and merge if
possible.

As with the other algorithms, deletion could require a large amount of
time in pathological cases. For example, Figure 17 shows a situation where
corner stitches will have to be examined and modified in every single tile in
the layout (running time will be proportional to the overall layout size). How-
ever, situations like this are not likely in integrated circuits. If the tiles are
about uniform in size, then the number of splits and joins will be roughly con-
stant, and the work in each split and join will be roughly constant, resulting
in a total running time independent of the overall size of th-e layout. Patho-

logical cases correspond to neighborhoods with great complexity, e.g. tiles

-132-

Corner Stitching December 13, 1982

NEREREN e —
—— - L T

delete

Figure 17. A pathological case for deletion. The running time is proportional
to the size of the whole layout: when splitting and merging the wide space
tiles it will be necessary to update stitches in every tile in the layout.

with many neighbors.

Appendix D: Snowplowing in Linear Time

A linear-time snowplow algorithm can be generated by extending the
algorithm for directed enumeration that was presented in Section 5.5. First,
each tile must store a value containing the amount by which the tile must be
moved. Initially the motion amounts are all zero. The basic directed
enumeration algorithm is used to scan the snowplow area in the direction of
the snowplow. When scanning a tile's neighbors (step 8 of the algorithm in
Section 5.5), add the current tile's width (if it is solid) or zero (if it is space)
to the tile’s motion amount, and store that value as the motion amount of
each neighbor, unless the neighbor’s motion amount is already greater than

the new value.

If the original snowplow area contains solid tiles, then the area must be

extended in order to include the area that will be snowplowed by the dis-

-33-

Corner Stitching December 14, 1982

placed tiles. This can be done during the directed enumeration by using the
original edge of the snowplow area plus the motion amount of the current tile

as the effective edge of the search area.

At the very beginning of the enumeration for each tile (step 3 in the
algorithm), check to see if the tile is solid. If it is, then add an entry to the
front of a list of tiles to be moved. The list entry contains the motion amount
and a pointer to the tile. At the very end of the enumeration of each tile, just
before returning, zero out the tile’s motion amount to restore its initial zero
value for future snowplows. After the directed enumeration has been com-
pleted, the list of tiles is processed in order to actually move tiles. The ord-
ering of the list (opposite to the order of enumeration) guarantees that the
space into which each tile is moved will be empty. After the list is moved,

then the original snowplow tile is moved.

The running time of the enumeration was shown in Section 5.5 to be
linear in the number of tiles in the search area. Processing the list to move
the tiles requires each tile to be deleted and then added at some other posi-
tion. For layouts with uniform tile sizes, the time for each tile will be con-
stant so overall snowplow time will be linear in the number of tiles in the
snowplow area. In a pathological case, the time to move a single tile could be
proportional to the size of the entire layout, but this cannot happen for all
(or even very many) of the tiles in the affected area. This can be seen by
noting that the total number of adjacencies in an area is no worse than linear
in the number of tiles in the area; if one tile has very many neighbors {(and
hence takes a long time to process), then some other tiles must have very
few neighbors. The total work done in moving the tiles is proportional to the

total number of adjacencies in the affected area, and hence can be no worse

-34 -

Corner Stitching December 14, 1982

than linear in the size of the entire layout. Thus the average behavior of this
snowplow algorithm is linear in the number of tiles in the affected area, and

the worst case behavior is linear in the number of tiles in the whole layout.

-35-

