
Magic Maintainer’s Manual #1: Installation and Development

John Ousterhout

Walter Scott

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

Tim Edwards

Johns Hopkins University Applied Physics Laboratory

Laurel, MD 20723

This tutorial corresponds to Magic version 7.

Tutorials to read first:

All of them.

Commands introduced in this tutorial:

:*profile, :*runstats, :*seeflags, :*watch

Macros introduced in this tutorial:

(None)

1 Introduction

This document provides some information to help system administrators and would-be Magic

maintainers learn about the system. Before doing anything to the internals of Magic, you should

read at least the first, and perhaps all four, of the papers on Magic that appeared together in the

1984 Design Automation Conference. In addition, the following portions of magic have their own

papers:

–1–



September 26, 2001 Magic Maintainer’s Manual #1: Installation and Development

extractor 1985 Design Automation Conference, page 286.

channel router 1985 Chapel Hill Conference on VLSI, page 145.

irouter and mzrouter 1988 Design Automation Conference, page 672.

resistance extractor 1987 Design Automation Conference, page 570.

2 Compiling and Installing Magic

If you’ve downloaded Magic via FTP, then it shouldn’t take much work to get it running. You

should first pick a location for Magic’s directory tree. Normally ˜cad is chosen, meaning that

“cad” is a username on the system with a home directory typically something like /home/cad/ or

/usr/local/cad/, but you might want to pick some other location to start, particularly if you do not

have root privilege to create or write into the ˜cad directory. If you choose a different location,

set your shell environment variable CAD HOME to that location and mentally translate the ˜cad

references in this document to the location you chose.

The download file comes in tarred, gzipped format. Follow the standard procedure to uncom-

press and expand:

tar xzf magic-7.1.tar.gz

cd magic-7.1

Followed by

make config

The first prompt asks for selection of the graphics interface(s). Magic is designed to link its

generic graphics calls to specific driver calls at runtime, so any combination of choices is possible.

Choose more than one option with a space-separated list of option numbers at the prompt. The

choices are as follows:

1. X11 for all versions of X11 (currently X11R6 is standard). Several other magic options

make use of X11 calls, such as the extended macro package, which uses the X server’s key

symbol lookup to allow macro definitions on function and keypad keys, so the X11 package

is preferred.

2. OpenGL for systems having OpenGL capability under X11. Generally, this applies to

SGI hardware, and Linux systems with accelerated 3D video hardware implementing the

OpenGL API, and an OpenGL-capable accelerated X server. This option is not recom-

mended for non-hardware-accelerated (i.e., software-implemented) OpenGL or compatible

(e.g., Mesa) servers, because the interface makes heavy use of color blending, implemented

in software by dreadfully slow flood fills.

3. SunView for Sun Workstations. This option is rather out of date, because although Solaris

still supports SunView, it also supports the superior X11 protocol.

4. X10 is legacy code for support of X10, the precursor of X11.

–2–



Magic Maintainer’s Manual #1: Installation and Development September 26, 2001

5. AED graphics terminals is legacy code for support of ancient serial-line graphics terminals.

They were great machines, once long ago (see Appendix A).

The next prompt asks for the target operating system. Most modern UNIX types are supported,

and any others usually fall under the category of BSD- or SYSV-compatible. At worst, an un-

supported system may require tweaking the compiler flags, which is best done directly to the file

misc/CFLAGS after running “make config”. Magic can be compiled for only one system at a

time. Select one of the following options:

1. Linux

2. NetBSD 1.x

3. FreeBSD 2.x

4. OSF/1 for 64-bit systems such as the Digital Alpha AXP

5. Solaris 2.x

6. SunOS 4.x for pre-Solaris Suns.

7. SGI IRIX for Silicon Graphics systems before SGI moved to the Linux/68000 platform

8. OS/2 Warp IBM’s much-too-late attempt to overthrow the Bill Gates empire

9. BSD Unix systems for Ultrix and various Berkeley BSD 4.3-based systems.

10. SYSV Unix systems for HPUX, Apple’s defunct A/UX, and various other System V-based

systems.

The third prompt asks for machine architecture for any machines requiring special compile

flags. They are the following:

1. Intel 80x86-based workstations for Intel and AMD platforms (Linux, NetBSD, FreeBSD,

OS/2 Warp)

2. HP 68000-based workstations

3. HP/PA-based workstations

4. MIPS workstation (RISCos4.0; not DECStations)

5. An Apple MacII (A/UX)

6. None of the above for everything else (Suns, SGIs, DECStations, DEC Alpha)

The final set of prompts selects various optional modules. On modern systems with vast

amounts of memory and disk space, the best choice is to use all of them. Systems with low

memory overhead (
�

128MB) may want to avoid SCM (the scheme interpreter).

–3–



September 26, 2001 Magic Maintainer’s Manual #1: Installation and Development

1. CALMA—module which enables reading and writing GDS-II (otherwise known as CALMA

or “streams”) format files.

2. CIF—module which enables reading and writing Caltech Intermediate Format (CIF) files.

Magic only knows how to write CIF and GDS-II, so at least one of these two ought to be

selected.

3. PLOT—module for graphics output. Supports PostScript, direct pixel output, versatec, and

gremlin formats.

4. READLINE—module incorporating the GNU “readline” package (version 4.1) into the

magic command-line interface. Readline implements command-line history and editing.

5. ROUTE—module which supports various routing tools (standard router, interactive router,

maze router, channel router, gate-array router, and global router).

6. SCM—module implementing the “scheme” command-line interpreter, a lisp-like program-

ming language for creating new commands and procedures.

7. SIM—the interactive interface to Stanford irsim (rsim) digital switch simulator.

8. .magic—Choice of using either the old or the new style of system startup (.magic) file. The

old style retains compatibility; the new file makes use of interactive macro capability, and, if

compiled under X11, extended macro capability for function, cursor, and keypad keys.

After configuration, compile and install using

make force

make install

The remaining sections of this manual deal with technical issues related to Magic source code

and its development.

3 Source Directory Structure

There are 49 source subdirectories in Magic. Most of these consist of modules of source code

for the system, for example database, main, and utils. See Section 5 of this document for brief

descriptions of what’s in each source directory. Besides the source code, the other subdirectories

are:

� doc

Contains sources for all the documentation, including man pages, tutorials, and maintenance

manuals. Subdirectories of doc, e.g. doc/scmos, contain the technology manuals. The

Makefile in each directory can be used to run off the documentation. The tutorials, main-

tenance manuals, and technology manuals all use LaTeX, which means that you will need

the LaTeX package to recompile the manuals from source. Documentation is also available

online in HTML format.

–4–



Magic Maintainer’s Manual #1: Installation and Development September 26, 2001

� include

Contains copies of all the header files (*.h) from all the modules.

� lib

Contains copies of each of the compiled and linked modules (*.o and *.a).

� magic

In addition to the source main() routine, this directory is where the modules of Magic are

linked to form the executable version of the system.

Magic is a relatively large system: there are around 575 source files, and 250,000 lines of C

code. In order to make all of this manageable, we’ve organized the sources in a two-level structure.

Each module has its own subdirectory, and you can make changes to the module and recompile it

by working within that subdirectory. The CVS method of software project version management

has been implemented to make it possible for several maintainers to work in parallel. The CVS

repository for magic is kept at host csl.cornell.edu in directory /ufs/repository. Participation in

Magic development requires a remote CVS username and password on server csl. Logging in

simply requires the execution of the following CVS command:

cvs -d :pserver:cvslogin@csl.cornell.edu:/ufs/repository login

To download the latest release of magic, use

cvs -d :pserver:cvslogin@csl.cornell.edu:/ufs/repository checkout magic

This will create a directory called “magic”. It contains the entire magic distribution. Once in

the magic/ directory, the -d option to CVS is no longer required. See the cvs (1) manual page for

details. The critical CVS commands are “cvs add” to introduce new files to the repository, “cvs

delete” to remove them, “cvs update” to merge in any new changes found in the repository, and

“cvs commit” to send local changes back to the repository. Simultaneous changes to the same file

are merged merged by heuristic; conflicts are flagged, to be resolved by hand on a case by case

basis.

There are two mailing lists associated with Magic development:

1. magic-hackers@csl.cornell.edu is for general news and discussions about the

development process.

2. magic-dev@csl.cornell.edu is for developers only and provides feedback on any

CVS changes made in the repository.

4 Compiling and Installing

The top-level Makefile (˜cad/src/magic/Makefile) provides many options. Before using the Make-

file, be sure to set your CAD HOME shell environment variable to the location of your top-level

cad directory (if it is not the standard ˜cad).

The most useful Makefile options are:

–5–



September 26, 2001 Magic Maintainer’s Manual #1: Installation and Development

� make config

Configure the Magic system for a particular type of display or operating system. This just

runs the :config shell script to set up a couple of files. The curious may examine the script

directly. If your configuration isn’t handled by this script, then you can use it simply as

a guide as to what to do. Much of the configuration is done with compilation flags. See

Section ?? for a full listing of them.

� make magic

Make a version of Magic. All sub-modules are remade, if needed, and then the final magic

binary is produced.

� make everything

Same as “make magic”. Both options make auxilary programs like ext2sim and ext2spice.

� make force

Force recompilation. Like a “make everything”, except that object files are first removed to

force complete recompilation from scratch.

� make clean

Delete files that can be remade, such as binaries, object, and library files.

� make install

Install the Magic binaries in ˜cad/bin (or $
�
CAD HOME�/bin if you have that set).

Putting together a runnable Magic system proceeds in two steps after a source file has been

modified. First, the source file is compiled, and all the files in its module are linked together

into a single file xyz.o, where xyz is the name of the module. Then all of the modules are linked

together to form an executable version of Magic. The command make in each source directory

will compile and link the module locally; make install will compile and link it, and also install

it in the include and lib directories. All Makefiles are set up to use the compiler flags found

in ˜cad/src/magic/misc/DFLAGS and ˜cad/src/magic/misc/CFLAGS. A list of flags appears in

Section ??.

The command make in the subdirectory magic will produce a runnable version of Magic in

that directory, using the installed versions of all modules. To work with the uninstalled version of

a module, create another subdirectory identical to magic, and modify the Makefile so that it uses

uninstalled versions of the relevant modules. For example, the Magic team uses subdirectories

hamachitest, mayotest, mhatest, oustertest, and wsstest that we use to test new versions of

modules before installing them. If you want to remake the entire system, type “make magic” in the

top-level directory (˜cad/src/magic).

5 Summary of Magic Modules

This section contains brief summaries of what is in each of the Magic source subdirectories.

� calma

Contains code to read and write Calma Stream-format files. It uses many of the procedures

in the cif module.

–6–



Magic Maintainer’s Manual #1: Installation and Development September 26, 2001

� cif

Contains code to process the CIF sections of technology files, and to generate CIF files from

Magic.

� cmwind

Contains code to implement special windows for editing color maps.

� commands

The procedures in this module contain the top-level command routines for layout commands

(commands that are valid in all windows are handled in the windows module). These rou-

tines generally just parse the commands, check for errors, and call other routines to carry out

the actions.

� database

This is the largest and most important Magic module. It implements the hierarchical corner-

stitched database, and reads and writes Magic files.

� dbwind

Provides display functions specific to layout windows, including managing the box, redis-

playing layout, and displaying highlights and feedback.

� debug

There’s not much in this module, just a few routines used for debugging purposes.

� drc

This module contains the incremental design-rule checker. It contains code to read the drc

sections of technology files, record areas to be rechecked, and recheck those areas in a hier-

archical fashion.

� ext2dlys

The ext2dlys directory isn’t part of Magic itself. It’s a self-contained program that uses the

hierarchical .ext files generated by Magic’s extractor and an optional netlist file designating

net pinouts (for purposes of counting I/O loads), and produces a wire-delay file. Also com-

piles an executable sim2dlys for delay calculations from .sim files. These programs are no

longer compiled and the module has been commented out in the top-level Makefile.

� ext2sim

This is another self-contained program. It’s a self-contained program that flattens the hier-

archical .ext files generated by Magic’s extractor into a single file in .sim format. See the

manual page ext2sim (1).

� ext2spice

This is another self-contained program. It converts .ext files into single file in spice format.

See the manual page ext2spice (1).

� extcheck

Yet another independent program. This one checks the .ext files for global node connectivity

and summarizes the number of FETs, nodes, etc. See the manual page extcheck (1).

–7–



September 26, 2001 Magic Maintainer’s Manual #1: Installation and Development

� extflat

Contains code that is used by the extract module and the ext2. . . programs. The module

produces a library that is linked in with the above programs.

� extract

Contains code to read the extract sections of technology files, and to generate hierarchical

circuit descriptions (.ext files) from Magic layouts.

� fsleeper

Like ext2sim, this directory is a self-contained program that allows a graphics terminal at-

tached to one machine to be used with Magic running on a different machine. See the manual

page fsleeper (1).

� garouter

Contains the gate array router from Lawrence Livermore National Labs.

� gcr

Contains the channel router, which is an extension of Rivest’s greedy router that can handle

switchboxes and obstacles in the channels.

� graphics

This is the lowest-level graphics module. It contains driver routines for X11 and OpenGL as

well as legacy drivers for the AED family of display terminals, Sun Windows, and X10. The

code here does basic clipping and drawing. If you want to make Magic run on a new kind of

display, this is the only module that should have to change.

� grouter

The files in this module implement the global router, which computes the sequence of chan-

nels that each net is to pass through.

� irouter

Contains the interactive router written by Michael Arnold at Lawrence Livermore National

Labs. This router allows the user to route nets interactively, using special hint layers to

control the routing.

� lisp

This module contains code which, if the SCHEME option is chosen at compile time, imple-

ments the lisp-like “scheme” interpreter. Scheme enables magic commands to be executed

in a programming language framework, so complex functions can be defined.

� macros

Implements simple keyboard macros.

� magicusage

Like ext2sim, this is also a self-contained program. It searches through a layout to find all

the files that are used in it. See magicusage (1).

–8–



Magic Maintainer’s Manual #1: Installation and Development September 26, 2001

� main

This module contains the main program for Magic, which parses command-line parameters,

initializes the world, and then transfers control to textio.

� misc

A few small things that didn’t belong anyplace else.

� mpack

Contains routines that implement the Tpack tile-packing interface using the Magic database.

(not supported)

� mzrouter

Contains maze routing routines that are used by the irouter and garouter modules.

� net2ir

Contains a program to convert a netlist into irouter commands.

� netlist

Netlist manipulation routines.

� netmenu

Implements netlists and the special netlist-editing windows.

� parser

Contains the code that parses command lines into arguments.

� plot

The internals of the :plot command. Code to write PostScript, raw pixel, versatec, and

gremlin formats.

� plow

This module contains the code to support the :plow and :straighten commands.

� prleak

Also not part of Magic itself. Prleak is a self-contained program intended for use in de-

bugging Magic’s memory allocator. It analyzes a trace of mallocs/frees to look for memory

leaks. See the manual page prleak (8) for information on what the program does.

� readline

“readline” is an independent library of routines implementing command-line history and

editing. Version 7.1 of magic uses GNU readline-4.1.

� resis

Resis is a module that does better resistance extraction via the :extresis command. Courtesy

of Don Stark of Stanford.

� router

Contains the top-level routing code, including procedures to read the router sections of tech-

nology files, chop free space up into channels, analyze obstacles, and paint back the results

produced by the channel router.

–9–



September 26, 2001 Magic Maintainer’s Manual #1: Installation and Development

� select

This module contains files that manage the selection. The routines here provide facilities for

making a selection, enumerating what’s in the selection, and manipulating the selection in

several ways, such as moving it or copying it.

� signals

Handles signals such as the interrupt key and control-Z.

� sim

Provides an interactive interface to the simulator rsim. Courtesy of Mike Chow of Stanford.

� tech

This module contains the top-level technology file reading code, and the current technology

files. The code does little except to read technology file lines, parse them into arguments,

and pass them off to clients in other modules (such as drc or database).

� textio

The top-level command interpreter. This module grabs commands from the keyboard or

mouse and sends them to the window module for processing. Also provides routines for

message and error printout, and to manage the prompt on the screen.

� tiles

Implements basic corner-stitched tile planes. This module was separated from database in

order to allow other clients to use tile planes without using the other database facilities too.

� undo

The undo module provides the overall framework for undo and redo operations, in that it

stores lists of actions. However, all the specific actions are managed by clients such as

database or netmenu.

� utils

This module implements a whole bunch of utility procedures, including a geometry package

for dealing with rectangles and points and transformations, a heap package, a hash table

package, a stack package, a revised memory allocator, and lots of other stuff.

� windows

This is the overall window manager. It keeps track of windows and calls clients (like dbwind

and cmwind) to process window-specific operations such as redisplaying or processing com-

mands. Commands that are valid in all windows, such as resizing or moving windows, are

implemented here.

� wiring

The files in this directory implement the :wire command. There are routines to select wiring

material, add wire legs, and place contacts.

–10–



Magic Maintainer’s Manual #1: Installation and Development September 26, 2001

6 Portability Issues

Magic runs on a variety of machines. Running “make config” in the top-level source directory sets

the compiletime options. If you are porting Magic, you should modify the configuration section at

the end of file ”misc/magic.h” to suit your machine, by testing compiler flags. No changes should

be made that would hamper Magic’s operation on other machines.

7 Compilation Switches

??

Over the years Magic has acquired a number of compilation switches. While it’s undesirable

to have so many, it seems unavoidable since people use Magic on such a wide variety of machines.

The file ˜cad/src/magic/misc/DFLAGS should contain the compile switches that you wish to use

at your site. All makefiles for Magic reference the common DFLAGS file. The switches in this

release are shown below.

These flags are normally setup by running the ”make config” script in ˜cad/src/magic. Some of

them are turned on in ”magic.h” when a particular machine configuration is detected.

7.1 Machine/OS Compiletime Options

The following switches should be defined automatically by the :config script upon selection of the

target hardware and OS.

� mips

For mips processors, such as the DECstation.

� MIPSEL

For little-endian mips processors, such as the DECstation 3100.

� MIPSEB

For big-endian mips processors.

� sun

For Sun machines.

� mc68000

For machines which have a version of the 68000 as the processor.

� sparc

Sparc-based machines.

� i386

For Intel x86-based machines.

� linux

For Linux systems.

–11–



September 26, 2001 Magic Maintainer’s Manual #1: Installation and Development

� vax

For VAX machines (legacy).

� lint

Used to bypass things that lint complains about. Don’t turn this on. Lint turns it on itself.

If needed, you can put the following switches in the DFLAGS file:

� macII

For the Apple Mac-II (running A/UX) (legacy).

� SUNVIEW

Used when including Magic’s SunView graphics drivers.

� SUN120

For the Sun120 machine (legacy).

� BSD4 2

Used in the utils module to patch around a broken version of flsbuf() that is needed in the

VAX version of Unix 4.2 BSD systems. This is rarely needed, since almost all version of

Unix now have this bug fixed (legacy).

� FASYNC

Hack for some versions of Sun2 software (legacy).

� NO VARARGS

Hack for machines without a VARARGS package.

� SYSV

For Unix System V.

Flags defined, if needed, in ”magic.h” based on other flags.

� BIG ENDIAN

Indicates big endian byte ordering is being used.

� LITTLE ENDIAN

Indicates little endian byte ordering is being used.

� NEED MONCNTL

Hack for machines without a moncontrol procedure.

� NEED VFPRINTF

Hack for machines without a vfprintf procedure.

� SIG RETURNS INT

Defined in magic.h for systems that expect a signal handler to return an integer rather than a

void.

–12–



Magic Maintainer’s Manual #1: Installation and Development September 26, 2001

7.2 Graphics Driver Compile-time Options

� X11

Used in the graphics module for the X11 driver.

� OpenGL

Used in the graphics module for the OpenGL/GLX driver.

� XLIB

Used for all graphics modules based on an X server (currently, that means X11 and OpenGL).

� X10

Used in the graphics module for the X10 driver (legacy).

� AED

Used in the graphics module when compiling for AED displays (legacy).

� GTCO

Used in the graphics module when using a GTCO bitpad with an AED display (legacy).

7.3 Compile-time Options for Module Inclusion

� NO CALMA

Flag to eliminate the calma module, to reduce the size of Magic.

� NO CIF

Flag to eliminate the cif module, to reduce the size of Magic.

� NO EXT

Flag to eliminate the ext module, to reduce the size of Magic (legacy; not among configura-

tion choices).

� NO PLOT

Flag to eliminate the plot module, to reduce the size of Magic.

� NO ROUTE

Flag to eliminate the router modules, to reduce the size of Magic.

� NO SIM

Flag to eliminate the sim module, to reduce the size of Magic.

� NO SCHEME INTERPRETER

Flag to eliminate the “scheme” command-line interpreter.

� USE READLINE

Flag to include the GNU “readline” package.

� OLD DOT MAGIC

Flag indicating use of the original (backwardly compatible) system startup “.magic” file.

–13–



September 26, 2001 Magic Maintainer’s Manual #1: Installation and Development

� LLNL

Flag to incorporate Lawrence Livermore extensions, including an area router, new channel

router, and stretch graphs (experimental; not among configuration choices).

7.4 Debugging Compiletime Options

� CELLDEBUG

Debugging flag for the database module.

� COUNTWIDTHCALLS

Debugging flag for the plow module.

� DEBUGWIDTH

Debugging flag for the plow module.

� DRCRULESHISTO

Debugging/tuning flag for the drc module.

� FREEDEBUG

Memory allocation debugging flag.

� MALLOCMEASURE

Memory allocation debugging flag.

� MALLOCTRACE

Memory allocation debugging flag.

� NOMACROS

Memory allocation debugging flag.

� PAINTDEBUG

Debugging flag for the database painting routines.

� PARANOID

Flag to enable consistency checking. With a system the complexity of Magic, you should

always leave this flag turned on (set automatically by the :config script).

8 Technology and Other Support Files

Besides the source code files, there are a number of other files that must be managed by Magic

maintainers, including color maps, technology files, and other stuff. Below is a listing of those

files and where they are located.

–14–



Magic Maintainer’s Manual #1: Installation and Development September 26, 2001

8.1 Technology Files

See “Magic Maintainer’s Manual #2: The Technology File” for information on the contents of

technology files. The sources for technology files are contained in the subdirectory tech, in files

like scmos.tech and nmos.tech. The technology files that Magic actually uses at runtime are

kept in the directory $
�
CAD HOME�/lib/magic/sys;make install in tech will copy the sources

to $
�
CAD HOME�/lib/magic/sys.Technology file formats have evolved rapidly during Magic’s

life, so we use version numbers to allow multiple formats of technology files to exist at once.

The installed versions of technology files have names like nmos.tech27, where 27 is a version

number. The current version is defined in the Makefile for tech, and should be incremented if

you ever change the format of technology files; if you install a new format without changing the

version number, pre-existing versions of Magic won’t be able to read the files. After incrementing

the version number, you’ll also have to re-make the tech module since the version number is

referenced by the code that reads the files.

8.2 Display Styles

The display style file sources are contained in the source directory graphics. See “Magic Main-

tainer’s Manual #3: The Display Style and Glyph Files” and the manual page dstyle (5) for a de-

scription of their contents. Make install in graphics will copy the files to $
�
CAD HOME�/lib/magic/sys,

which is where Magic looksfor them when it executes.

8.3 Glyph Files

Glyph files are described in Maintainer’s Manual #3 and the manual page glyphs (5); they define

patterns that appear in the cursor. The sources for glyph files appear in two places: some of them

are in graphics, in files like color.glyphs, and some others are defined in windows/windowXX.glyphs.

When you make install in those directories, the glyphs are copied to $
�
CAD HOME�/lib/magic/sys,which

is where Magic looks for them when it executes.

8.4 Color Maps

The color map sources are also contained in the source directory graphics. Color maps have

names like mos.7bit.std.cmap, where mos is the name of the technology style to which the color

map applies, 7bit is the display style, and std is a type of monitor. If monitors have radically

different phosphors, they may require different color maps to achieve the same affects. Right

now we only support the std kind of monitor. When Magic executes, it looks for color maps in

$
�
CAD HOME�/lib/magic/sys;make install in graphics will copy them there. Although color

map files are textual, editing by hand is undesirable; use Magic’s color map editing window instead.

9 New Display Drivers

The most common kind of change that will be made to Magic is probably to adapt it for new kinds

of color displays. Each display driver contains a standard collection of procedures to perform

basic functions such as placing text, drawing filled rectangles, or changing the shape of the cursor.

–15–



September 26, 2001 Magic Maintainer’s Manual #1: Installation and Development

A table (defined in graphics/grMain.c) holds the addresses of the routines for the current display

driver. At initialization time this table is filled in with the addresses of the routines for the particular

display being used. All graphics calls pass through the table.

If you have a display other than the ones currently defined (X11, OpenGL/GLX, SunView, and

the legacy X10 and AED drivers), and you want to build a new display driver, we recommend start-

ing with the routines for the X11 (all the files in graphics named grX11sun.c), or the Sun (named

grSunWn.c). Copy the files into a new set for your display, change the names of the routines, and

modify them to perform the equivalent functions on your display. Write an initialization routine

like x11suSetDisplay, and add information to the display type tables in graphics/grMain.c. At

this point you should be all set. There shouldn’t be any need to modify anything outside of the

graphics module.

The significant difference between the X11 driver and the Sun driver depends on the nature of

the server: The X11 server polls for new events, and the typical “main loop” of an X11 application

is a call to XtMainLoop() which never exits. This presents a problem for Magic, which is inter-

rupt driven, a choice made due to the large amount of internal processing (e.g., interactive DRC

checking) as compared to the small amount of user input (e.g., keystrokes and mouse buttons).

Magic has its own blocking loop, which is a call to select), a routine which continuously polls I/O

devices for interrupts. Because X11 (at least up to and including the R6 version) is not thread-safe,

these two loops cannot be threads. The only remaining possibility is to make the X11 main loop

run as a separate process (in the case of X11, called “X11Helper”), capture relevant X protocol

messages for the Magic window, and transmit the information to the Magic process through an

I/O pipe (the use of which triggers the I/O interrupt and breaks the select() loop). This method

has certain drawbacks, the main one being that if Magic crashes for any reason, the helper process

remains hanging until killed by hand or by a system reboot.

The Sun interface makes graphics calls as requested, which makes implementation for Magic

much simpler than X11, but consequently prevents remote display operation and efficient multi-

tasking, the major reasons for X11’s success.

Note that any graphics interfaces based on thread-safe graphics systems (e.g., Windows NT,

and hopefully X11R7, if it ever happens) can reduce the graphics interface complexity by running

the X11 event handler as a detached thread.

10 Debugging and Wizard Commands

Magic works fine under the latest versions of dbx and GNU gdb. The Makefiles are set up to

compile all files with the -g switch, which creates debugging information.

In the past, memory and speed limitations made it useful to include a flag, found in script :in-

stmodule, to strip the debugging symbols from the object files when linking the Magic executable.

Modern systems are fast and have copious amounts of both system memory and disk space, so this

option is set to “NO” in the script.

There are a number of commands that we implemented in Magic to assist in debugging. These

commands are called wizard commands, and aren’t visible to normal Magic users. They all start

with “*”. To get terse online help for the wizard commands, type :help wizard to Magic. The

wizard commands aren’t documented very well. Some of the more useful ones are:

� *watch plane

–16–



Magic Maintainer’s Manual #1: Installation and Development September 26, 2001

This causes Magic to display on the screen the corner-stitched tile structure for one of the

planes of the edit cell. For example, *watch subcell will display the structure of the subcell

tile plane, including the address of the record for each tile and the values of its corner stitches.

Without this command it would have been virtually impossible to debug the database mod-

ule.

� *profile on—off

If you’re using the Unix profiling tools to figure out where the cycles are going, this com-

mand can be used to turn profiling off for everything except the particular operation you want

to measure. This command doesn’t work on many systems, because the operating system

doesn’t support selective enabling and disabling of profiling.

� *runstats

This command prints out the CPU time usage since the last invocation of this command, and

also the total since starting Magic.

� *seeflags flag

If you’re working on the router, this command allows you to see the various channel router

flags by displaying them as feedback areas. The cursor should first be placed over the channel

whose flags you want to see.

A Serial-Line Graphics Displays

This section remains for information regarding the serial-line graphics driver. Although totally

outdated, these are the simplest graphics driver routines, and at least for now are worth keeping

around for reference, particularly when attempting to implement a new graphics driver.

Serial-line displays require some additional setup. If the display is an AED512 or similar

display, it will be attached to the mainframe via an RS232 port. Magic needs to be able to read

from this port, and there are two ways to do this. The first is simply to have no login process for

that port and have your system administrator change the protection to allow all processes to read

from the port and write to it. The second way is to have users log in on the display and run a

process that changes the protection of the display. There is a program called sleeper distributed

with Magic versions 6.5.1 and earlier; if it’s run from an AED port it will set everything up so

Magic can use the port. sleeper is clumsy to use, so we recommend that you use the first solution

(no login process).

When you’re running on mainframes, Magic will need to know which color display port to

use from each terminal port. Users can type this information as command-line switches but it’s

clumsy. To simplify things, Magic checks the file ˜cad/lib/displays when it starts up. The displays

file tells which color display port to use for which text terminal port and also tells what kind of

display is attached. Once this file is set up, users can run Magic without worrying about the system

configuration. See the manual page for displays (5).

One last note: if you’re running on an AED display, you’ll need to set communication switches

3-4-5 to up-down-up.

–17–


