
Magic Tutorial #10: The Interactive Router

Michael Arnold

O Division

Lawrence Livermore National Laboratory

Livermore, CA 94550

This tutorial corresponds to Magic version 7.

Tutorials to read first:

Magic Tutorial #1: Getting Started

Magic Tutorial #2: Basic Painting and Selection

Magic Tutorial #4: Cell Hierarchies

Commands introduced in this tutorial:

:iroute

Macros introduced in this tutorial:

ˆR, ˆN

1 Introduction

The Magic interactive router, Irouter, provides an interactive interface to Magic’s internal maze

router. It is intended as an aid to manual routing. Routing is done one connection at a time, the

user specifying a starting point and destination areas prior to each connection. The user determines

the order in which signals are routed and how multi-point nets are decomposed into point-to-area

connections. In addition parameters and special Magic hint layers permit the user to control the

nature of the routes. Typically the user determines the overall path of a connection, and leaves the

details of satisfying the design-rules, and detouring around or over minor obstacles, to the router.

The interactive router is not designed for fully automatic routing: interactions between nets are

not considered, and net decomposition is not automatic. Thus netlists are generally not suitable

input for the Irouter. However it can be convenient to obtain endpoint information from netlists.

The Net2ir program uses netlist information to generate commands to the Irouter with appropriate

endpoints for specified signals. Typically a user might setup parameters and hints to river-route a

–1–



September 26, 2001 Magic Tutorial #10: The Interactive Router

set of connections, and then generate Irouter commands with the appropriate endpoints via Net2ir.

For details on Net2ir see the manual page net2ir(1).

This tutorial provides detailed information on the use of the Irouter. On-line help, Irouter

subcommands, Irouter parameters, and hint-layers are explained.

2 Getting Started—‘Cntl-R’, ‘Cntl-N’, ‘:iroute’ and ‘:iroute help’

To make a connection with the Irouter, place the cursor over one end of the desired connection (the

start-point) and the box at the other end (the destination-area). Then type

Cntl-R

Note that the box must be big enough to allow the route to terminate entirely within it. A

design-rule correct connection between the cursor and the box should appear. The macro

Cntl-R

and the long commands

:iroute

:iroute route

are all equivalent. They invoke the Irouter to connect the cursor with the interior of the box.

Note that the last connection is always left selected. This allows further terminals to be connected

to the route with the second Irouter macro, Cntl-N. Try typing

Cntl-N

A connection between the cursor and the previous route should appear. In general Cntl-N

routes from the cursor to the selection.

There are a number of commands to set parameters and otherwise interact with the Irouter.

These commands have the general form

:iroutesubcommand [arguments]

For a list of subcommands and a short description of each, type

:iroute help

Usage information on a subcommand can be obtained by typing

:iroute help [subcommand]

As with Magic in general, unique abbreviations of subcommands and most of their arguments

are permitted. Case is generally ignored.

–2–



Magic Tutorial #10: The Interactive Router September 26, 2001

3 :Undo and Cntl-C

As with other Magic commands, the results of :iroute can be undone with :undo, and if the

Irouter is taking too long it can be interrupted with Cntl-C. This makes it easy to refine the results

of the Irouter by trial and error. If you don’t like the results of a route, undo it, tweak the Irouter

parameters or hints you are using and try again. If the Irouter is taking too long, you can very likely

speed things up by interrupting it, resetting performance related parameters, and trying again. The

details of parameters and hints are described later in this document.

4 More about Making Connections—‘:iroute route’

Start points for routes can be specified via the cursor, labels, or coordinates. Destination areas can

be specified via the box, labels, coordinates or the selection. In addition start and destination layers

can be specified explicitly. For the syntax of all these options type

:iroute help route

When a start point lies on top of existing geometry it is assumed that a connection to that

material is desired. If this is not the case, the desired starting layer must be explicitly specified.

When routing to the selection it is assumed that connection to the selected material is desired.

By default, routes to the box may terminate on any active route layer. If you are having trouble

connecting to a large region, it may be because the connection point or area is too far in the interior

of the region. Try moving it toward the edge. (Alternately see the discussion of the penetration

parameter in the wizard section below.)

5 Hints

Magic has three built-in layers for graphical control of the Irouter, fence (f), magnet (mag), and

rotate (r). These layers can be painted and erased just like other Magic layers. The effect each has

on the Irouter is described below.

5.1 The Fence Layer

The Irouter won’t cross fence boundaries. Thus the fence layer is useful both for carving out

routing-regions and for blocking routing in given areas. It is frequently useful to indicate the broad

path of one or a series of routes with fence. In addition to guiding the route, the use of fences can

greatly speed up the router by limiting the search.

5.2 The Magnet Layer

Magnets attract the route. They can be used to pull routes in a given direction, e.g., towards one

edge of a channel. Over use of magnets can make routing slow. In particular magnets that are long

and far away from the actual route can cause performance problems. (If you are having problems

with magnets and performance, see also the discussion of the penalty parameter in the wizard

section below.)

–3–



September 26, 2001 Magic Tutorial #10: The Interactive Router

5.3 The Rotate Layer

The Irouter associates different weights with horizontal and vertical routes (see the layer-parameter

section below). This is so that a preferred routing direction can be established for each layer. When

two good route-layers are available (as in a two-layer-metal process) interference between routes

can be minimized by assigning opposite preferred directions to the layers.

The rotate layer locally inverts the preferred directions. An example use of the rotate layer

might involve an L-shaped bus. The natural preferred directions on one leg of the L are the opposite

from the other, and thus one leg needs to be marked with the rotate layer.

6 Subcells

As with painting and other operations in Magic, the Irouter’s output is written to the cell being

edited. What the router sees, that is which features act as obstacles, is determined by the window

the route is issued to (or other designated reference window - see the wizard section.) The contents

of subcells expanded in the route window are visible to the Irouter, but it only sees the bounding

boxes of unexpanded subcells. These bounding boxes appear on a special SUBCELL pseudo-

layer. The spacing parameters to the SUBCELL layer determine exactly how the Irouter treats

unexpanded subcells. (See the section on spacing parameters below.) By default, the spacings to

the SUBCELL layer are large enough to guarantee that no design-rules will be violated, regardless

of the contents of unexpanded subcells. Routes can be terminated at unexpanded subcells in the

same fashion that connections to other pre-existing features are made.

7 Layer Parameters—‘:iroute layers’

Route-layers, specified in the mzrouter section of the technology file, are the layers potentially

available to the Irouter for routing. The layer subcommand gives access to parameters associated

with these route-layers. Many of the parameters are weights for factors in the Irouter cost-function.

The Irouter strives for the cheapest possible route. Thus the balance between the factors in the cost-

function determines the character of the routes: which layers are used in which directions, and the

number of contacts and jogs can be controlled in this way. But be careful! Changes in these

parameters can also profoundly influence performance. Other parameters determine which of the

route-layers are actually available for routing and the width of routes on each layer. It is a good

idea to inactivate route-layers not being used anyway, as this speeds up routing.

The layers subcommand takes a variable number of arguments.

:iroute layers

prints a table with one row for each route-layer giving all parameter values.

:iroute layerstype

prints all parameters associated with route-layer type.

:iroute layerstype parameter

–4–



Magic Tutorial #10: The Interactive Router September 26, 2001

prints the value of parameter for layer type. If type is ‘*’, the value of parameter is printed for

all layers.

:iroute layers type parameter value

sets parameter to value on layer type. If type is ‘*’, parameter is set to value on all layers.

:iroute layers type * value1 value2 . . . valuen

sets a row in the parameter table.

:iroute layers *parameter value1 . . . valuen

sets a column in the table.

There are six layer parameters.

� active

Takes the value of YES (the default) or NO. Only active layers are used by the Irouter.

� width

Width of routing created by the Irouter on the given layer. The default is the minimum width

permitted by the design rules.

� hcost

Cost per unit-length for horizontal segments on this layer.

� vcost

Cost per unit-length for vertical segments.

� jogcost

Cost per jog (transition from horizontal to vertical segment).

� hintcost

Cost per unit-area between actual route and magnet segment.

8 Contact Parameters—‘:iroute contacts’

The contacts subcommand gives access to a table of parameters for contact-types used in routing,

one row of parameters per type. The syntax is identical to that of the layers subcommand described

above, and parameters are printed and set in the same way.

There are three contact-parameters.

� active

Takes the value of YES (the default) or NO. Only active contact types are used by the Irouter.

� width

Diameter of contacts of this type created by the Irouter. The default is the minimum width

permitted by the design-rules.

� cost

Cost per contact charged by the Irouter cost-function.

–5–



September 26, 2001 Magic Tutorial #10: The Interactive Router

9 Spacing Parameters—‘:iroute spacing’

The spacing parameters specify minimum spacings between the route-types (route-layers and

route-contacts) and arbitrary Magic types. These spacings are the design-rules used internally

by the Irouter during routing. Default values are derived from the drc section of the technology

file. These values can be overridden in the mzrouter section of the technology file. (See the Magic

Maintainers Manual on Technology Files for details.) Spacings can be examined and changed at

any time with the spacing subcommand. Spacing values can be nil, 0, or positive integers. A value

of nil means there is no spacing constraint between the route-layer and the given type. A value of

0 means the route-layer may not overlap the given type. If a positive value is specified, the Irouter

will maintain the given spacing between new routing on the specified route-layer and pre-existing

features of the specified type (except when connecting to the type at an end-point of the new route).

The spacing subcommand takes several forms.

:iroute spacing

prints spacings for all route-types. (Nil spacings are omitted.)

:iroute spacing route-type

prints spacings for route-type. (Nil spacings are omitted.)

:iroute spacing route-type type

prints the spacing between route-type and type.

:iroute spacing route-type type value

sets the spacing between route-type and type to value.

The spacings associated with each route-type are the ones that are observed when the Irouter

places that route-type. To change the spacing between two route-types, two spacing parameters

must be changed: the spacing to the first type when routing on the second, and the spacing to the

second type when routing on the first.

Spacings to the SUBCELL pseudo-type give the minimum spacing between a route-type and

unexpanded subcells. The SUBCELL spacing for a given route-layer defaults to the maximum

spacing to the route-layer required by the design-rules (in the drc section of the technology file).

This ensures that no design-rules will be violated regardless of the contents of the subcell. If subcell

designs are constrained in a fashion that permits closer spacings to some layers, the SUBCELL

spacings can be changed to take advantage of this.

10 Search Parameters—‘:search’

The Mzrouter search is windowed. Early in the search only partial paths near the start point are

considered; as the search progresses the window is moved towards the goal. This prevents combi-

natorial explosion during the search, but still permits the exploration of alternatives at all stages.

The search subcommand permits access to two parameters controlling the windowed search, rate,

–6–



Magic Tutorial #10: The Interactive Router September 26, 2001

and width. The rate parameter determines how fast the window is shifted towards the goal, and

the width parameter gives the width of the window. The units are comparable with those used in

the cost parameters. If the router is taking too long to complete, try increasing rate. If the router

is choosing poor routes, try decreasing rate. The window width should probably be at least twice

the rate.

The subcommand has this form:

:iroute search [parameter] [value]

If value is omitted, the current value is printed, if parameter is omitted as well, both parameter

values are printed.

11 Messages—‘:iroute verbosity’

The number of messages printed by the Irouter is controlled by

:iroute verbosityvalue

If verbosity is set to 0, only errors and warnings are printed. A value of 1 (the default) results

in short messages. A value of 2 causes statistics to be printed.

12 Version—‘:iroute version’

The subcommand

:iroute version

prints the Irouter version in use.

13 Saving and Restoring Parameters—‘:iroute save’

The command

:iroute save file.ir

saves away the current settings of all the Irouter parameters in file file.ir. Parameters can be

reset to these values at any time with the command

:source file.ir

This feature can be used to setup parameter-sets appropriate to different routing contexts. Note

that the extension .ir is recommended for Irouter parameter-files.

–7–



September 26, 2001 Magic Tutorial #10: The Interactive Router

14 Wizard Parameters—‘:iroute wizard’

Miscellaneous parameters that are probably not of interest to the casual user are accessed via the

wizard subcommand. The parameters are as follows:

� bloom Takes on a non-negative integer value. This controls the amount of compulsory

searching from a focus, before the next focus is picked based on the cost-function and win-

dow position. In practice 1 (the default value) seems to be the best value. This parameter

may be removed in the future.

� boundsIncrement Takes on the value AUTOMATIC or a positive integer. Determines

in what size chunks the layout is preprocessed for routing. This preprocessing (blockage

generation) takes a significant fraction of the routing time, thus performance may well be

improved by experimenting with this parameter.

� estimate Takes on a boolean value. If ON (the default) an estimation plane is generated

prior to each route that permits cost-to-completion estimates to factor in subcells and fence

regions. This can be very important to efficient routing. Its rarely useful to turn estimation

off.

� expandDests Takes on a boolean value. If ON (not the default) destination areas are ex-

panded to include all of any nodes they overlap. This is particularly useful if the Irouter

is being invoked from a script, since it is difficult to determine optimal destination areas

automatically.

� penalty Takes on a rational value (default is 1024.0). It is not strictly true that the router

searches only within its window. Paths behind the window are also considered, but with

cost penalized by the product of their distance to the window and the penalty factor. It was

originally thought that small penalties might be desirable, but experience, so far, has shown

that large penalties work better. In particular it is important that the ratio between the actual

cost of a route and the initial estimate is less than the value of penalty, otherwise the search

can explode (take practically forever). If you suspect this is happening, you can set verbosity

to 2 to check, or just increase the value of penalty. In summary it appears that the value of

penalty doesn’t matter much as long as it is large (but not so large as to cause overflows). It

will probably be removed in the future.

� penetration This parameter takes the value AUTOMATIC or a positive integer. It deter-

mines how far into a blocked area the router will penetrate to make a connection. Note

however the router will in no case violate spacing constraints to nodes not involved in the

route.

� window This parameter takes the value COMMAND (the default) or a window id (small

integers). It determines the reference window for routes. The router sees the world as it ap-

pears in the reference window, e.g., it sees the contents of subcells expanded in the reference

window. If window is set to COMMAND the reference window is the one that contained

the cursor when the route was invoked. To set the reference window to a fixed window, place

the cursor in that window and type:

–8–



Magic Tutorial #10: The Interactive Router September 26, 2001

:iroute wizard window .

References

[1] M.H. Arnold and W.S. Scott, “An Interactive Maze Router with Hints”, Proceedings of the

25th Design Automation Conference, June 1988, pp. 672–676.

–9–


