
Magic Tutorial #5: Multiple Windows

Robert N. Mayo

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

(Updated by others, too.)

This tutorial corresponds to Magic version 7.

Tutorials to read first:

Magic Tutorial #1: Getting Started

Magic Tutorial #2: Basic Painting and Selection

Commands introduced in this tutorial:

:center :closewindow, :openwindow, :over, :specialopen, :under, :windowpositions

Macros introduced in this tutorial:

o, O, “,”

1 Introduction

A window is a rectangular viewport. You can think of it as a magnifying glass that may be moved

around on your chip. Magic initially displays a single window on the screen. This tutorial will

show you how to create new windows and how to move old ones around. Multiple windows allow

you to view several portions of a circuit at the same time, or even portions of different circuits.

Some operations are easier with multiple windows. For example, let’s say that you want to

paint a very long line, say 3 units by 800 units. With a single window it is hard to align the box

accurately since the magnification is not great enough. With multiple windows, one window can

show the big picture while other windows show magnified views of the areas where the box needs

to be aligned. The box can then be positioned accurately in these magnified windows.

–1–



September 26, 2001 Magic Tutorial #5: Multiple Windows

2 Manipulating Windows

2.1 Opening and Closing Windows

Initially Magic displays one large window. The

:openwindow [cellname]

command opens another window and loads the given cell. To give this a try, start up Magic

with the command magic tut5a. Then point anywhere in a Magic window and type the command

:openwindow tut5b (make sure you’re pointing to a Magic window). A new window will appear

and it will contain the cell tut5b. If you don’t give a cellname argument to :openwindow, it will

open a new window on the cell containing the box, and will zoom in on the box. The macro o

is predefined to :openwindow. Try this out by placing the box around an area of tut5b and then

typing o. Another window will appear. You now have three windows, all of which display pieces

of layout. There are other kinds of windows in Magic besides layout windows: you’ll learn about

them later. Magic doesn’t care how many windows you have (within reason) nor how they overlap.

To get rid of a window, point to it and type

:closewindow

or use the macro O. Point to a portion of the original window and close it.

2.2 Resizing and Moving Windows

If you have been experimenting with Magic while reading this you will have noticed that windows

opened by :openwindow are all the same size. If you’d prefer a different arrangement you can

resize your windows or move them around on the screen. The techniques used for this are different,

however, depending on what kind of display you’re using. If you are using a workstation, then you

are also running a window system such as X11 or SunView. In this case Magic’s windows are

moved and resized just like the other windows you have displayed, and you can skip the rest of this

section.

For displays like the AED family, which don’t have a built-in window package, Magic im-

plements its own window manager. To re-arrange windows on the screen you can use techniques

similar to those you learned for moving the box for painting operations. Point somewhere in the

border area of a window, except for the lower left corner, and press and hold the right button. The

cursor will change to a shape like this:

This indicates that you have hold of the upper right corner of the window. Point to a new

location for this corner and release the button. The window will change shape so that the corner

moves. Now point to the border area and press and hold the left button. The cursor will now look

like:

–2–



Magic Tutorial #5: Multiple Windows September 26, 2001

This indicates that you have hold of the entire window by its lower left window. Move the

cursor and release the button. The window will move so that its lower left corner is where you

pointed.

The other button commands for positioning the box by any of its corners also work for win-

dows. Just remember to point to the border of a window before pushing the buttons.

The middle button can be used to grow a window up to full-screen size. To try this, click the

middle button over the caption of the window. The window will now fill the entire screen. Click in

the caption again and the window will shrink back to its former size.

2.3 Shuffling Windows

By now you know how to open, close, and resize windows. This is sufficient for most purposes, but

sometimes you want to look at a window that is covered up by another window. The :underneath

and :over commands help with this.

The :underneath command moves the window that you are pointing at underneath all of the

other windows. The :over command moves the window on top of the rest. Create a few windows

that overlap and then use these commands to move them around. You’ll see that overlapping

windows behave just like sheets of paper: the ones on top obscure portions of the ones underneath.

2.4 Scrolling Windows

Some of the windows have thick bars on the left and bottom borders. These are called scroll bars,

and the slugs within them are called elevators. The size and position of an elevator indicates how

much of the layout (or whatever is in the window) is currently visible. If an elevator fills its scroll

bar, then all of the layout is visible in that window. If an elevator fills only a portion of the scroll

bar, then only that portion of the layout is visible. The position of the elevator indicates which part

is visible—if it is near the bottom, you are viewing the bottom part of the layout; if it is near the

top, you are viewing the top part of the layout. There are scroll bars for both the vertical direction

(the left scroll bar) and the horizontal direction (the bottom scroll bar).

Besides indicating how much is visible, the scroll bars can be used to change the view of the

window. Clicking the middle mouse button in a scroll bar moves the elevator to that position. For

example, if you are viewing the lower half of a chip (elevator near the bottom) and you click the

middle button near the top of the scroll bar, the elevator will move up to that position and you will

be viewing the top part of your chip. The little squares with arrows in them at the ends of the scroll

bars will scroll the view by one screenful when the middle button is clicked on them. They are

useful when you want to move exactly one screenful. The :scroll command can also be used to

scroll the view (though we don’t think it’s as easy to use as the scroll bars). See the man page for

information on it.

If you only want to make a small adjustment in a window’s view, you can use the command

:center

–3–



September 26, 2001 Magic Tutorial #5: Multiple Windows

It will move the view in the window so that the point that used to be underneath the cursor is

now in the middle of the window. The macro , is predefined to :center.

The bull’s-eye in the lower left corner of a window is used to zoom the view in and out. Clicking

the left mouse button zooms the view out by a factor of 2, and clicking the right mouse button

zooms in by a factor of 2. Clicking the middle button here makes everything in the window visible

and is equivalent to the :view command.

2.5 Saving Window Configurations

After setting up a bunch of windows you may want to save the configuration (for example, you

may be partial to a set of 3 non-overlapping windows). To do this, type:

:windowpositions filename

A set of commands will be written to the file. This file can be used with the :source command

to recreate the window configuration later. (However, this only works well if you stay on the same

kind of display; if you create a file under X11 and then :source it under SunView, you might not

get the same positions since the coordinate systems may vary.)

3 How Commands Work Inside of Windows

Each window has a caption at the top. Here is an example:

mychip EDITING shiftcell

This indicates that the window contains the root cell mychip, and that a subcell of it called

shiftcell is being edited. You may remember from the Tutorial #4 that at any given time Magic is

editing exactly one cell. If the edit cell is in another window then the caption on this window will

read:

mychip [NOT BEING EDITED]

Let’s do an example to see how commands are executed within windows. Close any layout

windows that you may have on the screen and open two new windows, each containing the cell

tut5a. (Use the :closewindow and :openwindow tut5a commands to do this.) Try moving the

box around in one of the windows. Notice that the box also moves in the other window. Windows

containing the same root cell are equivalent as far as the box is concerned: if it appears in one

it will appear in all, and it can be manipulated from them interchangeably. If you change tut5a

by painting or erasing portions of it you will see the changes in both windows. This is because

both windows are looking at the same thing: the cell tut5a. Go ahead and try some painting and

erasing until you feel comfortable with it. Try positioning one corner of the box in one window

and another corner in another window. You’ll find it doesn’t matter which window you point to,

all Magic knows is that you are pointing to tut5a.

These windows are independent in some respects, however. For example, you may scroll one

window around without affecting the other window. Use the scrollbars to give this a try. You can

also expand and unexpand cells independently in different windows.

–4–



Magic Tutorial #5: Multiple Windows September 26, 2001

We have seen how Magic behaves when both windows view a single cell. What happens

when windows view different cells? To try this out load tut5b into one of the windows (point

to a window and type :load tut5b). You will see the captions on the windows change—only

one window contains the cell currently being edited. The box cannot be positioned by placing

one corner in one window and another corner in the other window because that doesn’t really

make sense (try it). However, the selection commands work between windows: you can select

information in one window and then copy it into another (this only works if the window you’re

copying into contains the edit cell; if not, you’ll have to use the :edit command first).

The operation of many Magic commands is dependent upon which window you are pointing

at. If you are used to using Magic with only one window you may, at first, forget to point to the

window that you want the operation performed upon. For instance, if there are several windows on

the screen you will have to point to one before executing a command like :grid—otherwise you

may not affect the window that you intended!

4 Special Windows

In addition to providing multiple windows on different areas of a layout, Magic provides several

special types of windows that display things other than layouts. For example, there are special

window types to edit netlists and to adjust the colors displayed on the screen. One of the special

window types is described in the section below; others are described in the other tutorials. The

:specialopen type [args]

command is used to create these sorts of windows. The type argument tells what sort of window

you want, and args describe what you want loaded into that window. The :openwindow cellname

command is really just short for the command :specialopen layout cellname.

Each different type of window (layout, color, etc.) has its own command set. If you type :help

in different window types, you’ll see that the commands are different. Some of the commands,

such as those to manipulate windows, are valid in all windows, but for other commands you must

make sure you’re pointing to the right kind of window or the command may be misinterpreted.

For example, the :extract command means one thing in a layout window and something totally

different in a netlist window.

5 Color Editing

Special windows of type color are used to edit the red, green, and blue intensities of the colors

displayed on the screen. To create a color editing window, invoke the command

:specialopen color [number]

Number is optional; if present, it gives the octal value of the color number whose intensities

are to be edited. If number isn’t given, 0 is used. Try opening a color window on color 0.

A color editing window contains 6 “color bars”, 12 “color pumps” (one on each side of each

bar), plus a large rectangle at the top of the window that displays a swatch of the color being edited

–5–



September 26, 2001 Magic Tutorial #5: Multiple Windows

(called the “current color” from now on). The color bars display the components of the current

color in two different ways. The three bars on the left display the current color in terms of its red,

green, and blue intensities (these intensities are the values actually sent to the display). The three

bars on the right display the current color in terms of hue, saturation, and value. Hue selects a

color of the spectrum. Saturation indicates how diluted the color is (high saturation corresponds to

a pure color, low saturation corresponds to a color that is diluted with gray, and a saturation of 0

results in gray regardless of hue). Value indicates the overall brightness (a value of 0 corresponds

to black, regardless of hue or saturation).

There are several ways to modify the current color. First, try pressing any mouse button while

the cursor is over one of the color bars. The length of the bar, and the current color, will be

modified to reflect the mouse position. The color map in the display is also changed, so the colors

will change everywhere on the screen that the current color is displayed. Color 0, which you should

currently be editing, is the background color. You can also modify the current color by pressing

a button while the cursor is over one of the “color pumps” next to the bars. If you button a pump

with “+” in it, the value of the bar next to it will be incremented slightly, and if you button the “-”

pump, the bar will be decremented slightly. The left button causes a change of about 1% in the

value of the bar, and the right button will pump the bar up or down by about 5%. Try adjusting the

bars by buttoning the bars and the pumps.

If you press a button while the cursor is over the current color box at the top of the window,

one of two things will happen. In either case, nothing happens until you release the button. Before

releasing the button, move the cursor so it is over a different color somewhere on the screen. If you

pressed the left button, then when the button is released the color underneath the cursor becomes

the new current color, and all future editing operations will affect this color. Try using this feature

to modify the color used for window borders. If you pressed the right button, then when the button

is released the value of the current color is copied from whatever color is present underneath the

cursor.

There are only a few commands you can type in color windows, aside from those that are valid

in all windows. The command

:color [number]

will change the current color to number. If no number is given, this command will print out the

current color and its red, green, and blue intensities. The command

:save [techStyle displayStyle monitorType]

will save the current color map in a file named techStyle.displayStyle.monitorType.cmap, where

techStyle is the type of technology (e.g., mos), displayStyle is the kind of display specified by a

styletype in the style section of a technology file (e.g., 7bit), and monitorType is the type of the

current monitor (e.g., std). If no arguments are given, the current technology style, display style,

and monitor type are used. The command

:load [techStyle displayStyle monitorType]

will load the color map from the file named techStyle.displayStyle.monitorType.cmap as above.

If no arguments are given, the current technology style, display style, and monitor type are used.

When loading color maps, Magic looks first in the current directory, then in the system library.

–6–


