
Chapter 2

Continuous Wavelet Transform

2.1 Introduction to the 1-Dimensional Continuous Wavelet Transform

Wavelet transforms are time-frequency transforms which map the time-frequency plane

in the manner of Figure 1.1 (c) using specific dilations and translations. Tilings of higher-frequency

areas of the plane have larger bandwidth and thus, in accordance with the uncertainty principle,

shorter timespan. The bandwidth is proportional to the position of the tile along the frequency axis.

The relationship between frequency position and bandwidth(and inversely, timespan) is in keeping

with the Nyquist sampling theory which states that in order to accurately capture the information

about a signal (so as to be able, for instance, to reconstructthat signal), the signal must be sampled

at a twice the value of the highest frequency in the signal. Inother words, the timespan covered

by the samples must be inversely proportional to the bandwidth of the signal. This makes wavelet

tiling more “natural” in a sense, and while it cannot guarantee the most efficient representation of

any arbitrary signal, it will tend to be a good representation for most natural signals.

It is important to explain what I mean by a “good representation.” A voice-band recording

sampled at 8 kHz can be called a “good representation” in the sense that it contains all the informa-

tion about the signal necessary to reconstruct (e.g., play back) the recording. On the other hand, a

sampled signal (without any further transformations) is rarely used for speech recognition because

the speech signal is encoded into the time-domain signal in complex ways that cannot be detected

by a purely time-domain analysis (the Dirac basis). Equivalently, a Fourier transform (Fourier ba-

sis) of the signal is of limited use. A windowed Fourier transform does fairly well at capturing

the essence of the speech recording, but if the window is of fixed length, then there will always be

some events which are too short in time to be accurately represented. Two solutions to that problem
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may come to mind: Either vary the size of the window accordingto the demands of the moment,

or perform the analysis in parallel with windows of several different lengths. The first solution is

adaptive, and while it is a very interesting solution, it is difficult to compute and requires informa-

tion about the adaptation to be kept with the decomposed signal if the signal is to be analyzed or

reconstructed. Advanced adaptive techniques are beyond the scope of this thesis. The other solu-

tion, parallel analysis at different scales, works well, but the result is redundantly computed, which

increases the bandwidth of the decomposed signaln-fold for n parallel analyses. If we remove

the redundant parts of the decomposition, the part that is left is a wavelet decomposition. Parts of

the decomposition capture features of the signal which occur over short time (transients) and other

parts capture features of the signal which have fine frequency structure (formants). Natural signals,

particularly acoustic ones which are the primary topic of the thesis, require the accurate detection

of both transient-like and formant-like features for automatic classification and interpretation of the

signal.

Each tile of the time-frequency plane represents a single “wavelet coefficient” computed

by applying a filtering function centered on that area and having the correct aspect ratio between

time span and bandwidth. The so-called “mother function” describes a family of functions at dif-

ferent scales (a) and temporal offsets (b) which determine the position and aspect ratio of each tile

covering the time-frequency plane: a;b(t) = 1pa � t� ba � : (2.1)

It is desirable for the wavelet function to havecompact support; that is, the function should be

bounded or generally localized in time and frequency. In formal terms, the wavelet should be able

to meet the criteria [14] j (t)j � c (1 + jtj)�1�� (2.2)j	(!)j � c (1 + j!j)�1�� (2.3)

for some� > 0. Existence of an inverse transform depends on the relationshipZ 1�1 j (!)j2j!j d! < +1: (2.4)

Equation (2.4) implies that	(! = 0) = 0, which in turn implies an oscillatory function in time.

The Discrete Wavelet Transform (DWT) is a discrete-time function which derives from

certain families of orthonormal basis functions which satisfy the conditions of (2.3) and (2.4). The
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wavelet mother function is bound is space by satisfying the stronger relationship (t) = 0 outside

of a small region of compact support. Bounding the frequencyis a matter of filtering. Because the

system is discrete-time, the filtering functions are FIR filters and the bandpass characteristic results

from sequential application of a lowpass and a highpass filter [10], a common practice in signal

processing. An elegant “pyramid” algorithm [11] defines filtering over different frequency scales

in a recursive manner in a way that allows information from higher frequencies to be pushed into

lower frequencies as the recursion progresses.

Using well-developed discrete-time filter theory, the FIR highpass and lowpass filters can

be transformed into an efficient pipelined butterfly filter (also known as a lattice filter) [12]. The FIR

filter coefficients or the equivalent lattice filter coefficients are uniquely determined by the mother

wavelet basis function. The length of the FIR or butterfly filter is the wavelet order. Higher-order

wavelet functions typically yield better distribution of information among the wavelet dilations,

leading to better data compression when the wavelet system is used for that purpose.

2.2 CWT vs. DWT

The Continuous Wavelet Transform (CWT) is an analog filtering function and is similar

to what is known as the Gabor spectrogram [13]. Similarly to the Discrete Wavelet Transform, it

requires operations of lowpass and highpass filtering at different scales. However, the filtering func-

tions are performed on the input in parallel, as a filterbank,with the lowpass and highpass functions

combined into a single bandpass function. The different scales are interpreted as adjacent bands in

the frequency domain, with the bandwidth increasing proportionally with the center frequency of the

band: thus the CWT is described by a constant-Q filterbank. That description is shown graphically

in Fig. 2.1.

The DWT produces the equivalent result by starting with a block of discrete data and

performing successive high- and lowpass digital filtering.The filtering is repeated on the lowpass

output in order to bandpass the signal in a series of stages called “dilations.” Each dilation divides

the frequency space of the current interval in half while doubling the time span, thus keeping the

time-frequency product constant. In contrast, the CWT divides a signal into a set of logarithmically-

scaled frequency bands by passing it through a bank of constant-Q bandpass filters. Both the CWT

and the DWT are filterbanks, although the CWT takes the more intuitive form of a physical filter

with a transfer function in the frequency and time domains. DWT filters are carefully formulated

mathematical constructs whose transfer functions are recursive and which can only be said to per-
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Figure 2.1: Output sampling. Points marked ‘�’ represent center of the time-frequency area covered
by that sampled output.

Figure 2.2: Frequency-time representation of the input as overlapping Gaussian filters.
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form “lowpass” and “highpass” functions in a vaguely-defined sense. Due to the constraints of

the Discrete Wavelet Transform specification, all DWT filters have compact support. The fact that

the DWT can be confined absolutely in time and frequency is proof that it cannot be implemented

by physical filters in a continuous time domain. By being physically realizable, the CWT cannot

achieve perfect compact support. Instead, analogously to the way elliptical filters such as the Cheby-

shev and Butterworth are generated, CWT functions are constructed in order to achieve maximal

compactness with respect to some criterion.

A major difference between the DWT and the CWT is that the CWT loses the concept

of compact support. The continuous-time nature of the transform implies the use of causal filters,

whose frequency response cannot be perfectly limited to a given bandwidth. Instead, the filters

must overlap. The shape and complexity of the filter determines the amount of overlap and thus

higher-order filter functions can be used to describe higher-order continuous wavelet transforms,

analogously to the way that higher-order functions operatein the discrete wavelet transform.

2.3 Gabor Logons and Wavelets

The beginnings of the theory of the continuous wavelet transform begin with a seminal

work by Gabor [8], a paper with the rather bold title “Theory of Communication” (1946) which

outlines the physical basis behind limitations of time-domain and Fourier analysis and shows how

both time and frequency can be incorporated into a function providing the optimal tradeoff in reso-

lution between the two domains, and how the time-frequency plane can be effectively represented

by tiling with these functions. Gabor calls the functions “logons,” those functions which have min-

imum�!�t. The simplest logon form (lowest order CWT filter) is the Gaussian function,	(!) = e�!2=2�2 : (2.5)

The laws of Fourier transforms dictate that a Gaussian in thetime domain is also a Gaussian in the

frequency domain, thus this function is smooth in all directions on the time-frequency plane. The

properties of Fourier transforms also dictate a symmetry between time and frequency shifts of a

signal and multiplication by a complex sinusoid in frequency and time, respectively:	(!) = e�j!ta e�(!�!b)2=2��2b (2.6) (t) = e�j!at e�(t�tb)2=2�2b (2.7)
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The complex exponential in either transform can be split into real and imaginary parts, in which

case the function appears as a sinusoid modulated by a Gaussian envelope, as shown in Figure 2.3.

A family of curves can be generated on this basis, using the Gaussian as an envelope around a

sinusoidal signal of differing frequencies. The meaning ofthese curves should be intuitively clear:

The more cycles of a sinusoid fit into the Gaussian envelope, the better the frequency is defined, but

the poorer the time is defined. A pure sinusoid of infinite duration represents one extreme, for which

frequency is known exactly but time is not known at all. Likewise, the Gaussian itself represents

the other extreme: the cosine function for which time is known exactly but for which frequency is

entirely unknown, having no reference signal to which it canbe compared. The “wavelet tiling” of

the time-frequency plane (Figure 1.1 (c)) dictates the ratio of !a, the modulating frequency, to�b,
the width of the Gaussian envelope. As one gets bigger, the other gets smaller.
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Figure 2.3: Gabor sine and cosine logons, or wavelets.

The Fourier transform property of time and frequency shiftsyields an interesting insight

about the connection to dilations and shifts of the discretewavelet transform, since they are man-

ifestations of the Fourier and inverse Fourier transforms.Unlike the discrete wavelet transform

families, the Fourier transform pair of the Gabor logon family is beautifully symmetric.
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Other useful continuous wavelet filter functions can be derived starting from different

criteria for compactness. One such case is the chirplet [16], which allows rotation of the filter with

respect to the time and frequency axes.

The frequency shift of the Gabor logon, which is a multiplication by a complex sinusoid

in the time domain, amounts to a signal demodulation, where in order to maintain the symmetry

between the time and frequency sides of the transform, the complex nature of the frequency shift

must be maintained; that is, the modulation must be performed with both a sine and a cosine to

represent the real and imaginary parts of the multiplication with the complex exponential.

2.4 Complex Demodulation

Continuous-time bandpass filter functions with arbitrarily highQ values are notoriously

difficult to design with precision (a fact which will be discussed in detail in Chapter 3, Section 3.5).

It is not especially difficult to build a second-order filter section which can be tuned externally to

the desired specifications, but managing to get an entire filterbank of 16 or 32 independent sections

to all match within a given tolerance can be difficult or impossible, depending on the strictness

of the specifications. Adding a requirement of low power consumption compounds the problem.

Generally, the only practical circuit solution is to leave the continuous-time domain and instead enter

the discrete-time domain, with the use of switched capacitor (S-C) circuits. The result is accurate

(for analog) computation with modest power consumption at the expense of die area, which tends

to be high due to the use of large numbers of capacitors.

We did, in fact, resort to switched capacitor architecturesfor all of our wavelet filter

functions. However, it was not necessary to stop optimizingat the architectural (circuit) level. On

the algorithmic level, we were further able to make better bandpass filters using a method called

complex demodulation[9]. Demodulation is a well-established method used widelyin modems

and radios, based on the principle that the frequency content of a signal can be shifted up or down

by multiplying it by a pure sinusoidal “carrier” signal and then filtering appropriately. In those

applications, the signal to be broadcast is first modulated on a carrier signal to push it into a high-

frequency broadcast band, and then demodulated by the receiver to retrieve the original signal. The

purpose of modulating is twofold: First, the high-frequency signal can be broadcast much further

without significant attenuation, and second, a large numberof signals can be transmitted at the same

time by assigning each one a non-overlapping portion of the electromagnetic spectrum.
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Demodulation of a signal by a carrier

An input time-varying signalx(t) is multiplied by a sinusoidal reference signals(t) =cos(!0t). As viewed in the frequency domain, the result splits the input around the
reference to generate the sum (reference+ input) and difference (reference� input)
components. This result can be easily seen by considering a input consisting of a single
sinusoidal function of arbitrary phase relationship to thereference, for instancex(t) =cos(!t+ �). The modulation is thenx(t)s(t) = cos(!t+ �)cos(!0t): (2.8)

Now, adding the trigonometric identitiescos(u+ v) = cos(u)cos(v) � sin(u)sin(v) (2.9)cos(u� v) = cos(u)cos(v) + sin(u)sin(v) (2.10)

together gives cos(u+ v) + cos(u� v) = 2cos(u)cos(v) (2.11)

such that, when used with Equation (2.8), we getx(t)s(t) = 12 (cos((!0 + !)t+ �) + cos((!0 � !)t� �)) (2.12)

which contains one sinusoid describing the sum!0+! of the carrier and signal frequen-
cies, and one describing the difference!0 � !. Extending the result to arbitrary inputs
involves viewing the arbitrary input as a Fourier series of sine components; since the
modulation multiplication is a linear function, superposition applies, and every Fourier
component of the arbitrary input is split into sum and difference components across the
carrier frequency. Filtering the resultant signal with a highpass filter which accepts the
sum component but rejects the difference component is the process known asmodula-
tion. Filtering the same signal instead with a lowpass filter which accepts the difference
component but rejects the sum component is the process knownasdemodulation.

A useful application of the principle of signal modulation involves performing the demod-

ulation first. In such case, the signal to be encoded is multiplied by an in-band carrier frequency

in order to shift the desired frequency band down to zero. Theresulting signal is lowpass filtered

to remove the component representing the sum of carrier and modulator. If desired, the signal can

then be modulated back into its original band, at which pointthe result is a bandpassed signal. Not

only is it bandlimited, but the band to which it is limited canbe made arbitrarily small, since there

is no limit (other than the practical limits of noise, jitterof the carrier frequency,etc.) to the cutoff

frequency of the lowpass function. The tight band limit translates to an arbitrarily large effective

value ofQ. The position of the band is placed at the carrier frequency,so it can be made very

accurate (particularly since in our architecture the carrier frequency is driven by a quartz oscillator).
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The method just described is also a well-established method, used in subband coders

and to make “lock-in” amplifiers able to analyze miniscule frequency bands for signal and noise

analysis.

There is one small mathematical catch to this method. When a signal is demodulated to

zero frequency, parts of the signal extend into the negativefrequency domain, which in terms of

the actual measured signal means that these frequencies arefolded back (aliased) into the positive

frequency domain. There they would be inseparable except for the “complex” part of complex

demodulation. The method requires two carrier signals, oneof which is offset from the other by

90 degrees phase. Thus if one carrier describes sin(!t), then the other describes cos(!t). Two

demodulations are performed in parallel, each with one of the two carriers. The two resulting

signals both have frequencies aliased into apparent mush, but between the two signals is all the

information necessary to separate out the aliased parts after subsequent modulation. In fact, it can

be shown that this requires nothing more than separately modulating the two results, again with

the modulation carrier signals offset in phase, and adding the two modulation results together. No

filtering is necessary for the modulation step, which is another consequence of the math.

Complex Demodulation and Reconstruction of a signal by a carrier

Returning to our previous example: An input time-varying signalx(t) is multiplied by
two sinusoidal reference signalss1(t) = cos(!0t) ands2(t) = sin(!0t). Choosing forx(t) the simple form of a sinusoid of arbitrary phase�:x(t)s1(t) = cos(!t+ �)cos(!0t) (2.13)x(t)s2(t) = cos(!t+ �)sin(!0t) (2.14)

Applying the following trigonometric identities—cos(u+ v) + cos(u� v) = 2cos(u)cos(v) (2.15)sin(u+ v) + sin(u� v) = 2sin(u)cos(v) (2.16)

yields the following expressions:x(t)s1(t) = 12 (cos((!0 + !)t+ �) + cos((!0 � !)t� �)) (2.17)x(t)s2(t) = 12 (sin((!0 + !)t+ �) + sin((!0 � !)t� �)) : (2.18)

Now perform a lowpass filter by assuming an ideal filtering function, h(t), having a
Fourier transformH(!), which perfectly rejects the sum of frequencies while perfectly
passing the difference of frequencies (see Figure 2.4):h(t) � x(t)s1(t) = 12cos((!0 � !)t� �) (2.19)h(t) � x(t)s2(t) = 12sin((!0 � !)t� �): (2.20)
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Figure 2.4: Demodulation of an inputX in the frequency domain with a perfect sine waveS and
ideal modulation filterH.

Reconstruction involves first multiplying each function bythe same sine and cosine
carriers: h(t) � (x(t)s1(t))s1(t) = cos(!0t)12cos((!0 � !)t� �) (2.21)h(t) � (x(t)s2(t))s2(t) = sin(!0t)12sin((!0 � !)t� �): (2.22)

Finally, without filtering, these two parts are added together to produce the reconstruc-
tion (in this case, exact reconstruction, due to the use of perfect filters):x0(t) = h(t) � (x(t)s1(t))s1(t) + h(t) � (x(t)s2(t))s2(t) (2.23)= cos(!0t)12cos((!0 � !)t� �)+sin(!0t)12sin((!0 � !)t� �): (2.24)

The trigonometric identity (2.10) applies directly, giving the final result:x0(t) = 12cos((!0 � !0 + !)t+ �) (2.25)= 12cos(!0t+ �) (2.26)= 12x(t) (2.27)

showing that the reconstruction is exact except for the required application of a gain
of two. Again, this example can be extended to arbitrary inputs by the application of
Fourier series and superposition.

2.5 Complex Demodulation in the Continuous Wavelet Processor

The architecture used for complex demodulation in the wavelet processor is depicted in

Figures 2.5 and 2.6 and described below.
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Figure 2.5: Complex demodulation (2 channels shown).
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The input function is designated byfin(t). In order to demodulate it with respect to some

given frequency!c (one of the center frequencies of theN channels of the wavelet decomposition),

we use the following multiplication:fout(t) = 2h(t) � (fin (t) (cos!ct+ j sin!ct)) (2.28)

where the lowpass filter time-domain transfer functionh(t) is shown without reference to a specific

equation and is assumed for the sake of argument to be a filter which passes all frequencies below its

cutoff unattenuated, and blocks all frequencies above its cutoff. Since the lowpass filter is assumed

to be real, and the inputfin(t) is real, then the outputfout(t) of Equation (2.28) must necessarily be

complex-valued, and can be represented by separating it into real and imaginary parts:fout(t) � freal(t) + jfimag(t): (2.29)

Therefore, freal(t) = 2h(t) � (fin (t) cos!ct) (2.30)

and fimag(t) = 2h(t) � (fin (t) sin!ct) : (2.31)

Note that Equations (2.30) and (2.31) are themselves both real-valued. Both results are obtained

easily by multiplying the input by two sinusoids which are90� out of phase with each other.

Each part (sine and cosine) of the demodulation process produces a new signal which

contains the sum and the difference of the original and “carrier” frequencies. Since we are demod-

ulating the carrier frequency down to zero, we are interested only in the difference, so we use the

lowpass filterh(t) to get rid of the part containing the sum of the two signal frequencies. From

the remaining difference, one cannot separate signals on one side of!c from those on the other

since!c is now at zero and negative frequencies have no physical meaning. In the real-valued sig-

nal, negative frequencies are flipped over the frequency axis and alias into the positive frequency

spectrum. However, the information necessary to separate the positive from the negative frequency

components is preserved in the phase relationship betweenfreal(t) andfimag(t), as shown by the

exact reconstruction below.

In order to remodulate the signal back to its original frequency, we perform the following

multiplication: f̂in(t) = fout(t)(cos!ct� j sin!ct): (2.32)
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This is the same function as the demodulation (2.28) except for the change in sign and the lack of a

lowpass filter function. We multiply out the real and imaginary parts of this equation to get a purely

real result: f̂in(t) = freal(t) cos!ct+ fimag(t) sin!ct: (2.33)

This step separates the negative from the positive frequency components as it pushes the center

frequency up from zero to its original value. The result is the exact reconstruction of the original

input (within the limits of a physical lowpass filter to approximate the ideal one used here).

The signs have worked out such that the remodulating sinusoids have exactly the same

phase relation as the demodulating sinusoids. This fact suggests that an efficient architecture should

make use of the same hardware to perform both the demodulation and the remodulation. In other

words, a single chip can be configured either as the function decomposer or as the function recon-

structor. In the instance of the continuous wavelet transform, the lowpass filter for the demodulation

can be combined with the Gaussian filter of the transformation such that no additional filter is re-

quired.

2.6 Post-processing

Subsequent to complex demodulation and Gaussian filtering the system outputs are in

a form useful for signal processing: for instance, analog methods of compression wherein signal

bands with energy less than a critical threshold can be eliminated to save bandwidth prior to trans-

mission and reconstruction. As described thus far, the Gaussian CWT is a band equalizer, but with

all the outputs occupying frequency space around zero frequency. Thus the outputs are not in a form

suitable for efficient transmission, as they all overlap in the frequency domain. There are two ways

to arrange the outputs for transmission to the reconstruction system:

1. Modulate the signals into nonoverlapping frequency bands

2. Sample the system and time-multiplex the samples into an efficient representation.

The first method is the method of reconstruction, although the separated channels can be

modulated to any desired transmission frequency and ordered in any manner or compressed by the

scheme mentioned above to reduce the total transmission bandwidth. The second method allows

more flexibility in the representation by interleaving samples. It is also more faithful to the idea of

tiling the time-frequency plane: the bandpass filterbank quantizes the frequency domain; a sampler
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quantizes the time domain. A true wavelet transform needs toquantize both. A bandpass filterbank

whose outputs are not sampled is not, strictly speaking, a wavelet transformer.

Since the bandwidth of each channel is proportional to the center frequency as required in

a constant-Q system, and the contents of each band have been shifted down in frequency until the

band is centered around zero frequency, the most efficient description in terms of the time-frequency

uncertainty relation in a sampled-data representation requires that each frequency band be sampled

at a rate proportional to its bandwidth. The result of the sampling is that each rectangle in the time-

frequency plane shown in Figure 2.1 has an equal area representing the effective time and frequency

bandwidths of the Gaussian filter (with some overlap). The overlap of filter functions is depicted in

Figure 2.2. If the filter channels are sampled in the binary-tree fashion shown when the channels are

centered on alog2 scale, the samples can be easily time-division multiplexedinto a single output

stream [17].

2.7 An Analog CWT Processor

The first attempt to build a Continuous Wavelet Transformingprocessor consisted primar-

ily of a continuous-time, subthreshold analog design fabricated in a standard CMOS process. The

analog circuits were based on the analog VLSI techniques described by Carver Mead inAnalog

VLSI and Neural Systems[1]. The underlying idea was to generate a set of exponentially-spaced

clock (square) waveforms which would then be shaped (via filtering) into sine and cosine pairs, and

multiplied directly with the continuous-time, continuous-valued input using a translinear (analog)

multiplier.

This chip was designed in subthreshold analog as an alternative to using a computer or

DSP system to perform the same transform. The advantages of this approach are reduced size and

power consumption. The resulting implementation is inflexible in terms of ability to reprogram

the type or order of the wavelet function, and requires dealing with the problems of temperature

sensitivity, nonlinearity of analog computation, variable process parameters, and noise injection

throughout the circuit (particularly that caused by the digital circuits generating the square wave).

As will be seen presently, not all of these problems could be overcome sufficiently, resulting in a

move toward a more mixed-mode architecture (Chapter 2 Section 2.15).
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2.8 Generating carrier sinusoids

This chip, as mentioned above, used square waves (clock signals) as its basis for generat-

ing sinusoids at specific frequency and phase. Specifically,the architecture called for each channel

center frequency to be half the value of the neighboring channel. Additionally, the architecture was

made such that each wavelet processor core would generate center frequencies for six channels.

The master clock is applied to the system most conveniently as a two-phase, non-overlapping signal

which becomes the first input to a cascade of toggle flip-flops (T-FFs) made in the standard way

from two transparent latches in series. The two-phase flip-flops conveniently give outputs from the

first and second latches which are 90� out of phase with each other (this is necessarily true for the

input of the second stage and beyond because each of the two-phase outputs of the previous stage is

forced to be 25% duty cycle, and the two phases are exactly 180� apart. The same can be ensured

for the first stage by doubling the master clock frequency andpreceding the first stage with another

toggle flip-flop). The flip-flop configuration is shown in Figure 2.7. Signalscos(in)andsin(in) are

the pulse trains corresponding to the frequency and phase ofthe sine and cosine components of the

preceding channel. Signalscos(out)andsin(out)are the pulse trains which are shaped by filtering

and become the modulating signals for the current channel. The reset login ensures that the sine and

cosine parts have the correct phase relative to each other upon initialization of the circuit.

sin(in)

cos(in)

φ1
φ1

φ2
φ2

Vdd

φ2φ1

φ2φ1 sin(out)

Reset

φ2 φ1

φ2 φ1

cos(out)

Reset

Vdd

Figure 2.7: Circuit diagram of the frequency-division toggle flip-flops.
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2.9 Analog multiplication

Purely analog multiplication is very problematic due to thelimited range of linearity in

such circuits, especially when the circuits are realized insubthreshold CMOS technology. A stan-

dard circuit for analog multiplication of voltages is the Gilbert multiplier (Figure 2.8). The Gilbert

multiplier is based on the translinear principle and in terms of linearity and noise performance is

best implemented using bipolar transistors rather than MOSFETs for the critical components of the

translinear loop (for a full discussion of translinear circuits and the tradeoffs between MOSFET and

bipolar devices, see Chapter 3).

Vdd VddVdd Vdd Vdd Vdd

Vref2

Vref1 Vin1

Iout

Vref2Vin2Vin2

Vbias

Figure 2.8: Gilbert multiplier with cascodes.

The Gilbert multiplier circuit executes a nonlinear function which, for input signals close

to the reference, can be described by the linear approximation Iout / (Vin1 �Vref1 ) �(Vin2 �Vref2 ).
As with most subthreshold MOS translinear circuits, the input voltage swing is limited to a fewkT=q, or about 50 mV. and is difficult to extend by more than a factorof two or so through the

use of increasingly complicated linearization techniques[5]. A simple derivation of this limiting

voltage can be found in Appendix A.

2.10 Wavelet Gaussian Function

In addition to allowing simple sampling of each output channel, the use of complex de-

modulation simplifies the process of designing bandpass filters that maintain a Gaussian shape while
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allowing variable center frequency and width. Because the signals are first demodulated until the

center of the frequency band of interest is placed at zero frequency, it is only necessary to create

a Gaussian lowpass filter, which is one half of a Gaussian function placed at zero frequency. Two

identical filters are required for the sine and cosine parts of the complex demodulation. The signals

are remodulated to their respective center frequencies during reconstruction using the same method

(and preferably the same hardware, if feasible). The resulting output will be reflected symmetrically

across the modulation frequency, behaving as if it had been passed directly through a bandpass fil-

ter with Gaussian characteristics. For demodulation used in the context of the continuous wavelet

transform, the lowpass filter for the demodulation can be combined with the Gaussian filter required

by the wavelet transformation. Note that, according to Equation 2.33, reconstructing the signal does

not require any filtering subsequent to remodulation.

We based the design of the circuit which approximates the half-Gaussian lowpass filter

function (as described by Grossman [13]) on a probability argument. First, I present Equation (2.34)

which describes the filter transfer function of the circuit:H(s) = VoutVin = � 1�s+ 1�n: (2.34)

This filter function describes a cascade ofn first-order lowpass filter sections in series. Although

Equation (2.46) converges to a delta function in the limit asn!1 for constant� , it can be shown

that when� is replaced by an expression which maintains constant bandwidth, the transfer function

approaches the Gaussian function (2.5) asn ! 1. A proof of this equation can be found in [31]

which shows that the Gaussian shape is an example of the central limit theorem of probability: In

other words, it is a result of the use of cascaded stages and isrelatively independent of the shape of

the filter.

Forn sections in cascade, the relationship between� and the Gaussian bandwidth� from

the wavelet mother function, Equation (2.5), is� = 1�pn ln(2) : (2.35)

The circuit is shown in part in Fig. 2.11. Although not an architectural necessity, we

chose to implement each first-order filter as a transconductance-C filter using transconductance

amplifiers operating in the subthreshold region. The transconductance amplifiers are connected as

voltage followers, which in conjunction with the capacitorat the output is a configuration called

a “follower-integrator.” Due to considerations of signal-to-noise ratio and the ability to generate a
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Figure 2.9: Frequency-domain transfer function of the finaloutput ofn cascaded lowpass filters as
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given constant� from a voltage applied to the follower-integrators, we chose a cascade order of five

sections.
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Figure 2.11:n cascaded stages of a filter approximating a half-Gaussian function, using continu-
ous-time transconductance-C filters.

The center frequencies of the filters in the filter bank are spaced on alog2 scale. Assuming

speech-quality bandwidth for the input signal, we decided that six outputs would be sufficient,

giving typical center frequencies of 9kHz, 4.5kHz, 2.25kHz, 1.125kHz, 562.5Hz, and 281.25Hz

(unless more than one system is interleaved in the manner described in Section 2.22). The center

frequency of the highest-frequency filter is determined by an oscillator which can be generated

either on-chip for a voltage-controlled frequency, or off-chip for a stable frequency. The center

frequencies of the rest of the filters are determined by dividing down the oscillator appropriately.

The bandwidth of each Gaussian filter is set automatically with respect to the others with

the exception of the first and last filters, which have widths adjustable using two control voltagesVgaussH andVgaussL. In terms of the transfer function (2.46) for the filter, the parameters� of the

highest- and lowest-frequency filters are fixed by these control inputs. � should be calculated to

assure that the width of each Gaussian is proportional to thevalue of the center frequency, as it is

not determined automatically from the other system parameters.

More recently, this idea has been expanded upon by Harriset al. [22] for the creation of

so-called “gamma-tone” filters and filter structures which use carefully calculated weighted feed-

back and feedforward connections to cause the filter transfer function to reach a given accuracy of

approximation of the Gaussian shape in significantly fewer stages.
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2.11 Wavelet chip slice

The parallel nature of the analog wavelet computation allows the VLSI layout to be gen-

erated easily by abutting slices of circuitry. The filteringfunctions are identical for the sine and

cosine parts of the transform, so slices are logically grouped in pairs, with each slice containing one

transparent latch such that the pair of slices forms the flip-flop for dividing down the clock input to

that section. Thus the path of the frequency stepping runs vertically across all channels while the

signal path runs from left to right. In addition to generating the divide-by-two oscillator, each slice

is responsible for shaping (filtering) the oscillator signal to produce a smooth sine (or cosine) wave,

multiplying this modulating signal with the input, and filtering the result through a half-Gaussian-

shaped lowpass function. Finally, depending on whether thesection is configured for decomposition

or reconstruction, the circuit samples the filter outputs and multiplexes them into a stream (decom-

position), or else aggregates all the outputs together to produce the final result (reconstruction).

A block diagram of decomposition and reconstruction for a wavelet transform processor

sine/cosine pair (single channel, or “slice”) is shown in Figures 2.12 and 2.13, respectively. The

entire analog Wavelet Transform chip is shown in Fig. 2.14.

2.12 Chip Specifications� Power Supply: +5 V DC�5%� Input mean value: 2.5 V�0.5 V� Input p-p amplitude: 0.4 V� Input frequency range: 80 Hz to 10 kHz� Number of output channels: 12 (6 pairs)� Silicon area: 1.96�106 µm2 (in a 2.0 micron CMOS process)� Chip package: 68-pin PLCC

The technologies used to fabricate the several versions of the analog Continuous Wavelet

Transform processor are as follows:
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Figure 2.12: Wavelet decomposition block diagram for a single sine/cosine pair.
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Figure 2.13: Wavelet reconstruction block diagram for a single sine/cosine pair.

Table 2.1: Technologies used for the Wavelet processors.

Chip name Foundry Min. feature size Well type Poly

WaveChip2 Zilog 2.0 micron twin-well single
Z89c55ba Zilog 1.2 micron twin-well single

WaveChip5a Orbit 2.0 micron N-well double
WaveChip5b Orbit 2.0 micron P-well double
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Figure 2.14: Wavelet Transform Chip block diagram.

2.13 Limitations of the Architecture

The major drawback of this analog architecture involves theuse of filtered square wave

signals as the modulating sinusoids. The use of a square waveas a modulation carrier is well-

documented (see, for example, Horowitz & Hill, 2nd ed., p. 437) [28]. However, its use is restricted

to modulation in the usual sense wherein a low-frequency signal is pushed up into a high-frequency

band. The Fourier series describing a square wave contains an infinite series of odd harmonics

beginning with the fundamental, which attenuates only as1=n, wheren is the harmonic number (1,

3, 5, . . . ). The modulation performed by multiplying the square wave by the input signal can be

broken down by superposition into the multiplication of each of the square wave harmonics with

the input. If the destination band (carrier frequency) is large enough, then all of the intermodulation

products (multiplication of the input by all harmonics greater than the fundamental) are very far out

of band and can be easily attenuated with a simple filter. Unfortunately, if the function performed

is demodulation instead of modulation, then by definition the carrier frequency is in the band of

the signal and so any of its harmonics may be also. Consequently, intermodulation products will

be in-band and cannot be filtered out. Shaping a square wave into a sinusoid by filtering out the

higher harmonics is a difficult prospect at best involving complicated high-order elliptic filters;

the filter cutoff must be prohibitively sharp to pass the fundamental frequency but attenuate the

third harmonic to reasonable levels for clean signal processing (at least 40 to 50 dB for most audio
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applications; 60 to 70 dB for high fidelity). Complicated filter architectures were not addressed in

this series of wavelet processors, and so results did not reach acceptable levels of performance.

2.14 Variations on an Architecture

One interesting variation on this design was created and developed by Moreira-Tamayoet

al. [23, 24] at Texas A&M University. Using primarily the same complex demodulation technique

based on our architecture, the authors translated the entire problem into the time domain. In place

of the wavelet Gaussian function, they used a rectified cosine (also known as aHanning window, a

function which is reasonably easy to generate in the time domain and which is reasonably close to

the Gaussian in its time and frequency support. Its time-frequency product is approximately 0.513,

or 2.6% larger than the minimum area (1/2) of the Gaussian. The rectified cosine itself becomes

the envelope function; the wavelet function itself is generated by multiplying the rectified cosine

by a sinusoid of higher frequency. Effectively, this is a double demodulation, and simplifies the

implementation somewhat by making use of the same hardware architecture for generating both the

Gaussian (or in this case, Hanning) envelope and the waveletmodulating function. Their wavelet

family can be described by the function: (t) = Ae�j!ct (1 +m cos (!pt)) ; �� < !pt < � (2.36)

where this function is repeated (chained) in time, and the system repeated over dilations of the

frequency. The wavelet computation on an input functionf(t) for frequency scalea and time shiftb is written CWT (f; a; b) = 1pa Z `f`i f(t) � �g� t� ba � v� t� ba �� dt (2.37)

whereg(t) = exp (�j!ct) is implemented as a complex demodulation by separating the function

into sin (!ct) andcos (!ct), andv(t) = 0:5(1+m cos (!pt)). The architecture of Moreira-Tamayo

et al. also follows our architecture in its use of a master clock divided down by flip-flops for gen-

eration of multiple frequency square wave signals subsequently filtered to generate the sinusoid

modulator. However, the system is built at the component level rather than as a VLSI processor.

The analog multiplications are implemented with MC1494 analog multiplier integrated circuits.

The integration operation in Equation (2.37) is implemented by a transconductance-C circuit. A

slightly simplified block diagram of one channel of the system is shown in Figure 2.15. Only the

wavelet decomposition was reported in [23]. Compare Figure2.15 to the block diagram of the

decomposition half of our wavelet decomposition architecture, Figure 2.12.
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Figure 2.15: Architecture of Moreira-Tamayoet al.

The Moreira-Tamayo architecture quite nicely demonstrates the duality of the wavelet

transform: Because it incorporates both the time domain andthe frequency domain, efficient ar-

chitectures can be realized in either one. The response of both systems to the same input is the

same.

2.15 A Mixed-Mode Wavelet Processor

Several hardware implementations of the Continuous Wavelet Transform and related band-

pass filter bank architectures have been reported in recent years [17, 19, 23], including the analog

architecture discussed at the beginning of this chapter. The remaining sections of the chapter high-

light a novel architecture we developed for the continuous wavelet transform processor which is

unique in its encoding of the decomposition output and use ofoversampling techniques.

The goal of the new architecture was to overcome the obvious drawbacks of the analog

subthreshold MOS circuits, namely the quality of the carrier sinusoid signal and the linearity of the

modulation multiplication. The new architecture relies more on digital processing and as such is

more appropriately considered a “mixed-mode” design.

Other than the novel circuit methods used, the new design retains the essential charac-

teristics of the original wavelet architecture. To recap: The processor performs a demodulation of

the audio-frequency input signal in parallel acrossN channels, where the channels are adjacent

with minimal overlap, cover the audio frequency band of interest, and are centered on a logarithmic

scale. The process of demodulation shifts the signal frequencies from each channel center frequency
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down to zero. Each demodulation result is then filtered by a lowpass version of the wavelet func-

tion, which also serves as the postmultiplication filter forthe demodulator. Signal information on

both sides of the channel center frequency is preserved by using complex demodulation, in which

each channel is split into two parts, with the modulating sinusoid of one being 90� out of phase

with that of the other. The CWT is invertible: The reconstruction process consists of modulating

the channel outputs back to their respective center frequencies, and summing them all together. The

decomposition method is shown in Figure 2.5 and the reconstruction method in Figure 2.6.

The wavelet nature of the output allows the channel outputs to be efficiently encoded.

The outputs of the decomposition are time sampled at the Nyquist rate of each channel, and all the

sampled channel outputs are time-multiplexed into a singlestream. The reconstruction processor

decodes the data stream prior to reconstruction.

As we developed the oversampling architecture described inthe previous section, it be-

came clear that, as the carrier signal was both binary and discrete-time based on a well-defined

synchronous clock, the most efficient architecture would maintain the discrete-time nature of the

carrier, and retain a digital mode of processing throughoutas much of the architecture as possible.

Following this line of reasoning leads to an elegant and extremely efficient design for a complex

demodulation multiplier and Gaussian filter.

In the introduction to this chapter, I mentioned that by using complex demodulation, very

accurate center frequencies for the bandpass function derive directly from the carrier signal fre-

quency, which itself is derived from a quartz oscillator. Inthe previous section, the wavelet trans-

form architecture was developed, but the circuits using that architecture could not achieve acceptable

performance due to intermodulation products caused by poorly attenuated harmonics of the carrier

signal. Analog multipliers built from analog circuits by nature have a limited range of operation due

to nonlinearities in the circuit function. It remains to be explained how to get from the frequency-

accurate, digital-domain square wave clock signal to an accurate and repeatable sinusoidal signal.

That is the purpose of this section.

We developed a method for sinusoidal modulation of analog signals which does not re-

quire an explicit multiplication, and hinges on generationof accurate analog sine wave using the

mixed-mode technique of oversampling.

As demonstrated by repeated failure of performance of previously fabricated versions of

the wavelet processor, obtaining a sinusoidal signal by lowpass filtering a square wave introduces

too much distortion to make the system usable. The modulation function is sensitive to distortion

harmonics, which get multiplied by the input signal and act like many separate modulations about
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many different frequency axes. Each produces its own sum anddifference components, and some

are bound to end up in the signal band at the system output. In order to get predictable system

performance, it is necessary to have a sinusoid carrier signal with a fixed and controllable amount

of harmonic distortion. To this end we considered the possibility of generating an oversampled

version of a sinusoid using a delta-sigma modulator.

The delta-sigma circuit of Luet al. [26], an excellent example of the method, begins with

a standard resonator system consisting of a simple loop of two integrators. Implemented in the

digital (z) domain, each integrator requires a delay and accumulate operator, and one multiplication

by a constant coefficient. The delta-sigma method eliminates the multi-bit multiplications by in-

serting a delta-sigma modulator into the loop which renderspart of the resonator circuit a single-bit

value, where the single bit represents an oversampled sinusoidal oscillation. Figure 2.16 shows the

architecture, where no actual multiplications are required: One multiplication is reduced to a multi-

plexing operation, and the other in the digital domain is a bit shift operation. The remainder of the

system still requires precision digital delay and accumulate operations, as does the implementation

of the second-order delta-sigma modulator.
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Figure 2.16: The analog oscillator architecture of Luet al. [26] containing a 2nd-order delta-sigma
modulator.

Eventually it became obvious to us that our system is much more specific than the general

delta-sigma method described above. More to the point, the delta-sigma method is rather a bit of

overkill for the purpose of generating a sine wave, particularly when only a finite set of frequencies

is required rather than a full range of arbitrary values. We need to generate a number of sinusoids

of known fixed frequency and amplitude. Presumably there exists a fixed sequence of bits which

describes the optimaln-times oversampled sinusoid in the context of our system fora given value

of n. If the optimal sequence can be determined, then it has a fixedamount of harmonic distortion

which should decrease with increasingn as the oversampled sequence contains increasing amount
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of information about the encoded signal.

The above phrase “in the context of our system” is critical inthat it is not to be assumed

that the same sequence is optimal for every possible implementation. The frequency-domain repre-

sentation of the original (unfiltered) single-bit oversampled sequence can be determined by convert-

ing the bit sequence directly to a sequence of voltages in thetime domain according to the following

rules:� bits ’1’ are represented by some fixed positive voltage� bits ’0’ are represented by some fixed negative voltage� each voltage is applied for a fixed length of timet such that the entire sequence ofn bits has

lengthT = nt.
We then compute the FFT of this sequence. A sequence which accurately encodes a

sinusoid should show a large FFT component at the frequency of the sinusoid (which without loss of

generality we consider to be the inverse of the sequence length, f0 = 1=T ), show a highly attenuated

response at all frequencies close to the fundamental, with the harmonic distortion increasing at

large frequencies (an inherent property of oversampled signals). The quality of the sinusoid in the

context of the system cannot be determined from this FFT result. The oversampled sequence must

be lowpass filtered to retrieve the encoded signal, and so thequality of the resulting signal depends

both on the binary sequence used and the properties of the lowpass function used to retrieve the

analog signal from its oversampled representation. Furthermore, the input signal must be prefiltered

with a lowpass to attenuate components which would mix with the oversampled sequence and add

to the resulting harmonic distortion. The point is that the harmonic distortion is determined by the

process of the modulation itself—specifically, the way thatit causes frequencies of the input to mix

with harmonic distortion components of the carrier to become error components at the output—and

so the binary sequence required for optimal performance is intimately tied to the system itself.

One fallout of this consideration is that the bit sequence used to encode the sinusoid

cannot be determined until the system is known in detail. On the other hand, it is not possible to

know the exact requirements for the filtering system (for instance, size requirement of the VLSI

layout) until we know what the sequence is. Some iterations can be expected before a solution is

agreed upon. This fact makes it necessary to have a method which can fairly rapidly determine the

optimal sequence.
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It should be clear at once that a full search of then-bit space of the sequence is an “np-

hard” problem, and furthermore that each search involves a large amount of computation for simu-

lating the antialiasing filter and output filter, computing an FFT, and measuring harmonic distortion.

For the purpose of finding the optimal sequence, we define harmonic distortion as the ratio of the

amplitude of the largest distortion product to the amplitude of the fundamental frequency.

On the other hand, it should also be clear that there are a number of factors in our favor:

1. Inverted sequences have the same response as their non-inverted forms, and do not need to be

investigated. This is also true of reversed sequences.

2. Sinusoids have quarter-wave symmetry, and therefore thesequences should also (symmetric

signals can be closely approximated by non-symmetric sequences, as is generally the case in

a 2nd-order delta-sigma system, but there is no reason to explore this space). This cuts the

search space by a factor of four.

3. Only a small subset of2n sequences look anything like a sinusoid, allowing the possibility of

heuristic approaches.

The first consideration involves generating a quarter sequence, and then generating the

other three quarters by (in turn) reversing the sequence, inverting and reversing, and reversing once

again. A reasonable heuristic approach is to start with a known sequence which looks something

like a sinusoid, namely a square wave (for which the first quarter sequence is all ‘1’ bits). From

that point we need an iterative method which will explore thelocal space of nearby bit sequences

(‘nearby’ meaning in a Hamming distance sense) which will (hopefully) converge quickly to a

solution without encountering local minima along the way.

As is often true for these sorts of methods, we do not present (nor have we even attempted)

a proof of convergence. Our method successfully found bit sequences which exceeded the system

constraints and which met with our approval (i.e., the sequence was short enough that it was con-

ceivable to design a simple sequence generator to fit the wavelet system on a 2mm� 2mm layout).

2.16 Details of the Bit-Sequence-Finding Algorithm

It is possible to ascertain some properties of the solution before running the algorithm.

For instance, the average of ones and zeros in the bit sequence must match the integration under the
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sinusoid, and the difference between the two gives a rough indication of the minimum distortion

possible using a length-n sequence.

The way we have defined the system in Section 2.15, a DC value ofzero is represented

exactly by a bit sequence of alternating ones and zeros (� voltage). A DC value of one is represented

exactly by a bit sequence of all ones. Given this consideration, the expected ratio of ones to zeros

in a bit sequence in the first case is 1/2, and in the second case1. Following this line of reasoning,

the expected ratio of ones to zeros in the first quarter of the sine sequence isZ �20 (1 + 0:5 sinx)dx: (2.38)

The total integration divided by the interval comes to1=2 + 1=�, or 0.8183. This multi-

plied by 64 bits, for example, yields an expected value of between 52 and 53 ‘one’ bits, leaving 12

or 11 ‘zero’ bits. This is what we can expect the makeup of near-optimal sequences to be.

Comparing the integration under the curve to the instantaneous average of the bit sequence

at each step and then determining the next bit of the sequenceaccordingly is exactly the method of

sigma-delta modulation. The bit sequence produced is always changing from cycle to cycle due to

the residual error between the filtered bit sequence and the integral under the sine curve, which is

never zero.

A sequence ofn bits which is repeated exactly on every cycle can never achieve the

accuracy of ann-bit delta-sigma modulator. On the other hand, asn increases, so does the accuracy,

so that if the system requirement is a maximum fixed value of total harmonic distortion, there exists

a fixed bit sequence of some minimum lengthn which will meet that requirement.

The problem in finding the sequence is this: A sigma-delta system is deterministic: The

next bit in the output sequence is an exact function of the current state of the system. But a sigma-

delta-like method cannot be used to find an optimal fixed sequence, because changing any bit in the

fixed sequence changes the past, present, and future state ofthe system. Instead, it is necessary to

search the space of2n bit sequences to find one which achieves the desired accuracy.

Knowing the expected number of ‘one’ and ‘zero’ bits in the sequence still doesn’t help

much in finding the optimal sequence: The set of all combinations ofm ‘zero’ bits in a sequence of

lengthn remains computationally intractable for reasonable values ofn (such as 64).

The modulation system for the CWT, when using the oversampled sequence method, is

described by y(t) = �(x(t) � g(t)) � s0(t)� � h(t); (2.39)
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whereg(t) the impulse response of the lowpass prefilter andh(t) is the postmultiplication filter

as before (Section 2.4). The binary sequences0(t) is assumed periodic with quarter-wave symme-

try, and therefore can be described in the frequency domain by a Fourier series containing only

harmonics of odd orders in!0:S0(!) = 1Xk=0S0k(!) ; (2.40)S0k(!) = jck [� (! � (2k + 1)!0)� � (! + (2k + 1)!0)] : (2.41)

The fundamental componentS00(!) corresponds to the desired sinusoidal signals(t).
Figure 2.17 shows how the two systems operate under the assumption that the lowpass

filter functionsH(!) andG(!) are ideal,i.e., flat in the passband and with infinite rolloff at the

cutoff frequency. Under this assumption, it can be seen fromthe figures that an arbitrary input

spectrumX(!) corresponding to the time-domain inputx(t) produces the same outputy(t) for

both systems if and only if the prefilter bandwidth BW(G(!)) is constrained by!0 +BW(H(!)) < BW(G(!)) < 3!0 � BW(H(!)) : (2.42)

if the last inequality is not satisfied, convolution products ofX(!)�S0k(!) for k > 0 will be aliased

into the output.

In reality, the filtersH(!) andG(!) have finite rolloffs, and the equivalence between

the systems in Figure 2.17 is only approximate. The quality of the approximation depends on

the harmonic coefficientsck corresponding to the binary sequence, which can be optimized for

minimum distortion. There is a trade-off between the complexity of the sequence and that of the

filtersG andH, as illustrated in Section 2.18.

2.17 Sequence generation

The output spectrum generated by the modulation scheme contains intermodulation prod-

ucts between the prefiltered inputG(!) � X(!) and the harmonics ofS0k(!), with terms of the

form jck G (! � (2k + 1)!0) �X (! � (2k + 1)!0) �H(!): (2.43)

Only the fundamental termk = 0 is desired, and distortion arises from the higher-order intermod-

ulation products,k > 0. To reduce distortion, the coefficientsck need to be small fork > 0,
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Figure 2.17:Top: Demodulation of an inputX in the frequency domain with a perfect sine waveS
and ideal modulation filterH. Bottom: Demodulation of an inputX in the frequency domain with
an oversampled sine waveS0 using an ideal smoothing filterG and modulation filterH.

except for large values ofk for which the terms of (2.43) are reasonably small due to the attenua-

tion by the prefilterG. In other words, the low-frequency components of the binarysequences0(t)
need to approximate the sine waves(t) as closely as possible. Qualitatively, this corresponds toan

oversampled noise-shaped sine wave, as produced by the delta-sigma modulator method [26].

Techniques for deriving periodic sequences with several zero or small harmonic compo-

nents ofck are presented in [33]. We formulate the problem of finding an optimal binary sequence

directly from a minimum distortion criterion on the intermodulation components (2.43).

In general, the amount of distortion is input dependent, andassumptions need to be made

onX(!) to formulate an optimization criterion. Our criterion is tomaximize the ratio of energy in

the fundamental harmonic modulation component (k = 0) to the combined energy of the distortion

components (k > 0). Assuming a narrow bandwidth ofH(!) and an input spectrumX(!) which

in the worst case is flat in amplitude, the criterion becomes:Maximize : c20 jG(!0)j21Xk=1 c2k jG ((2k + 1)!0)j2 : (2.44)

which is equivalent to minimizing the harmonic distortion of the sequences0(t), filtered with the

same prefilterG(!). The criterion can be applied, in principle, to select the optimal bit sequence
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s0(nT ), for n = 1 : : : N . With quarter-wave symmetry, onlyN=4 bits (one quadrant) need to be

determined. Still, this problem has a combinatorial complexity, and becomes intractable for largeN . We obtain approximate solutions using a technique of iterative block optimization, where a full

search is repeatedly conducted over randomly selected blocks of consecutive bits in the sequence.

Appendix B lists a short Matlab program which performs the block-iterative sequence

search. The procedure for determining the harmonic distortion is as follows: A quarter-wave bit

sequence is expanded by inverting and reversal into a full wave and described in terms of values+1 and�1. An FFT is applied to this sequence and its magnitude computed. The resulting spec-

trum is multiplied by the frequency-domain transfer function of the lowpass filter (described as an

attenuation coefficient per FFT bin). Then we can directly compute total harmonic distortion as the

magnitude of the second FFT bin (the signal) divided by the sum of the magnitudes of all the other

FFT bins (the distortion).

In lieu of computing every one of the2n possible sequences, we combine exhaustive

search with a random perturbative method. The exhaustive search is performed over a tractable

subspace ofm bits, wherem < n (generally,m < 16 to compute in reasonable time), where the

remainingn�m bits are held fixed. On each iteration, the starting point of the subsequence to ex-

haustively search is chosen at random, the search space of2m sequences computed for a minimum,

then the minimizing sequence is chosen as the new sequence and the process is repeated. There is no

guarantee of success, and in practice the error surface is rife with local minima. Usually, however,

the algorithm produces acceptable results, meaning total harmonic distortion of�60 to�70 dB,

which suffices for most applications. The formulation of thealgorithm leaves open the possibility

of variants based on genetic algorithms: at every iterationof the algorithm, the bestz solutions are

kept rather than than the single best solution, allowing population statistics to determine the course

of the optimization. By searching a broader solution space at each step, the system is less likely to

become trapped in local minima, and the convergence time is significantly reduced.

2.18 Results and implementation

We demonstrate the principle with the following example anddescribe a simple and ele-

gant implementation. The filterG(!) is third order, implemented as a cascade of three single-pole

filter stages, each pole located atz = 15=16. The total sequence length isN = 256. Figure 2.19

shows the 64 bits of the first quarter of the sequence obtainedusing the iterative block optimization

method with block size 8. Figure 2.20 shows the FFT results for the filtered and unfiltered binary
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sequences. All harmonics of the filtered sequence are more than 60 dB below the fundamental. The

magnitude of the prime harmonic of the sequence is approximately 1.02, which is within 2% of

unity. This indicates that if the binary sequence is made of voltage levels�Vseq , then the resulting

sine wave will have a zero-to-peak amplitude within 2% ofVseq .
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Figure 2.18: The oversampled sine sequence.
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Figure 2.19: Optimized 64-bit oversampled sine sequence, first quadrant.

The advantages of using an oversampled modulation sequencerather than a simpler bi-

nary sequence can be appreciated by following comparison. To obtain the same 60 dB linearity

performance with, say, a square wave modulator, a premultiplication filter G with much sharper

rolloff such as a fourth-order Chebyshev or a 6th-order Butterworth would be required to compen-
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Figure 2.20: Frequency domain properties of the raw (o) and filtered (x) bit sequences.

sate for the sizable harmonics in the square wave. Such a filter would be more complicated to build

than the simple cascade of single-pole filters in the above example, and would be more sensitive to

mismatches in the implementation. On the other hand, the oversampled sequence is fairly easy to

generate, as outlined below.

The first-quadrant sequence of Figure 2.19 consists of 11 zeros and 53 ones, as expected

from the integral calculation in Equation 2.38. The asymmetry allows a simple implementation

using a sparse address decoder. A binary counter counts from0 to r � 1, wherer is the length of

one quarter of the full binary sequence. The address decoder, a wired-‘or’ implementation of nMOS

transistors and a pMOS pullup device with a small layout footprint, generates the 11 ‘zero’ bits at

the proper points of the count. The inversion and reversing operations needed to obtain the rest of

the full sequence can be elegantly realized by using a gray-code count rather than a binary count.

In ann-bit gray code, as illustrated in Figure 2.21, the lowern� 2 bits describe a sequence which

counts out forwards and then backwards. The inversion of thesequence is determined through an

exclusive-or operation of the sequence bit with then-th bit of the gray-code counter. It is also

quite straightforward to generate the addresses of a sequence 90� out of phase with the original, for
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complex modulation with both sine and cosine components, byperforming inversion as above but

using bitn � 1 of the counter. One technique is to use a sigma-delta modulator to transform an

arbitrary signal into binary form [25, 26]. However, in the case of modulation the (carrier) signal is

knowna priori, so a sigma-delta modulator is unnecessary and can be replaced by a simple digital

circuit which provides the multiplexer with a predetermined fixed sequence.
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Figure 2.21: Use of Gray code to generate sine and cosine sequences.

2.19 Modulation Multiplier

The previous section described a method by which an accuratesine wave can be generated

by filtering an oversampled binary sequence. Utilizing thistechnique immediately alleviates one of

the two major problems of the analog wavelet processor. Thissection addresses the other problem,

that of producing a linear multiplication of the input with the sinusoidal carrier signal.

Because implementation of the demodulation multiplication requires multiplication of an
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arbitrary continuous-valued input with aknownperiodic function (the sine wave), we are able to use

the oversampled sine sequence directly to achieve a highly linear analog multiplier.

Simple but practical modulation schemes make use of multiplication of a continuous-

valued signal and a binary-valued signal. An exact multiplication of an arbitrary input by a binary-

valued (�1) function can be realized as a multiplexer which is controlled by the function and alter-

nates between the input and its inverse. This is shown in Figure 2.22. In the figure, the multiplexer is

−1
Mux

Input

Output

Control

LPF
Multiply

0

1

Figure 2.22: Multiplexingvs.Multiplying.

controlled by a square wave [28]. The square wave is used as anapproximation to a sine wave with

all harmonics other than the fundamental considered to be “error” terms. As mentioned in the previ-

ous section, this works as long as the intermodulation products of the input signal and these “error”

harmonics fall well outside of the passband of the final result after the usual lowpass filtering.

In the same manner as the square wave example, any arbitrary binary sequence can be

used as a control, insofar as any unwanted intermodulation products fall outside the passband of the

postmultiplication filter. Since the purpose of oversampled representations of waveforms is to push

unwanted harmonics as far away as possible from the harmonics of the desired waveform, binary-

valued oversampled representations work extremely well inplace of the square wave in Figure 2.22.

It is assumed that the oversampling noise is negligible in the frequency band of interest, and can

therefore be filtered from the multiplication output.

2.20 Switch-Cap Wavelet Gaussian Function

The circuit which approximates a Gaussian filter is based on the same architecture as

described in Section 2.10 (shown in Figure 2.11), which is inturn based on the Central Limit

Theorem of statistics: A half-Gaussian profile is produced by an infinite cascade of lowpass filters.
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A finite cascade of simple filters will approximate the Gaussian transfer function to the degree of

accuracy required, provided that there is enough space in the VLSI layout to accommodate the

number of filters required.

Once it was determined that the output of the modulation multiplication would be a syn-

chronous discrete-time signal, the decision was made to change the continuous time filters into

switched capacitor filters. This is done for three reasons:� The discrete-time system scales correctly to any clock speed, so the system can be run accu-

rately either with real-time inputs or with non-real-time inputs, such as test inputs generated

by a computer. Non-real-time inputs do not even need to be strictly synchronous.� The switched capacitor architecture has much larger linearinput and output ranges than the

transconductance-C filters used in the analog architecture.� The bandwidth is controlled digitally and so can be computeddirectly from the system clock

driving the center-frequency oscillators, as opposed to being an independently-controlled

variable.

As with the continuous-time filter architecture, it is only necessary to create one half of a

Gaussian centered around zero. The same argument relating to the Central Limit Theorem applies,

so the switched capacitor filter retains the architecture ofa set of cascaded first-order lowpass sec-

tions. Figure (2.23) shows a section of the filter we designed. This circuit is an RC lowpass filter

using a simple switched capacitor simulated resistor [27].The filter design is a discrete-time circuit

and directly implements the (z-transformed) lowpass function through distribution of charge:� = � 11 + �� ; (2.45)Vout = �Vinz� 12 + (1� �)Voutz�1 (2.46)

where in the figure�1 and�2 are nonoverlapping clock signals of periodT which maps to thez-domain unit delay. This circuit maps to an equivalent (s-domain) RC lowpass filter byRC = �T .

The Gaussian lowpass filter consists of a cascade ofn sections, which have a combined

transfer function which converges to a Gaussian in the limitn ! 1. The choice of the number of

sections is a tradeoff between the accuracy of the filter withrespect to a true Gaussian and the delay

(and also noise) incurred by a signal passing through the cascade. We chose a cascade of eight

51



−

+

C αC

φ1 φ2
Vout

Vin

Figure 2.23: Single discrete-time lowpass filter section.

sections due to a primary constraint of accuracy. For eight stages, the resulting transfer function

matches a true Gaussian to about−60 dB.

The center frequencies of the effective bandpass functionsare determined by the fre-

quency of the modulator sine waves (described below), whichare spaced on alog2 scale. The

bandwidth of each wavelet filter is determined by the cutoff frequency of the switched capacitor

lowpass filter, and therefore is proportional to the period of its driving two-phase clock. The fre-

quency of this clock signal, like the clock which generates the oversampled carrier signal, is spaced

on alog2 scale. The fixed relationship between the carrier and the lowpass cutoff gives the wavelet

filterbank a constant-Q characteristic. The clock frequency can be derived from theclock driving

the modulator sequence generator (in our implementation, this is accomplished by dividing down

the master clock off-chip). The bandwidths typically are set so that adjacent channels overlap at the

half-magnitude point of the Gaussian function.

2.21 Output Time Multiplexing

Outputs of the Gaussian filter sections should be sampled in amanner which generates

the time-frequency distribution shown in Figure 2.1. The binary-tree time multiplexing shown is

quite easy to generate from a Gray code. As shown in Figure 2.24, control signals for taking the

output from each wavelet channel can be achieved by a counterwhich uses two-phase clocking and

generates Gray code as output. This control signal is the trigger signal,�2, for each Gray code digitQi. It can be seen that if�21 controls sampling of Channel 1,�22 controls sampling of Channel

2, etc., then Channel 1 is sampled twice as often as Channel 2, whichis sampled twice as often as

Channel 3, and so forth, and none of the signals overlap. One time slot per sequence of outputs is
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unused, but could be used to encode the DC level of the input. Note that a Gray code counter is as

simple to design as a binary counter. In the usual implementation of a binary counter as a cascade

of toggle flip-flops where each toggle flip-flop is a pair of transparent latches in series, the output

of the first latch in each pair encodes a Gray code while the output of the second latch in each pair

encodes the binary sequence.

Sync

Output
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φ11

φ12

φ21

Q2

Q3

Q4

φ13

φ22

φ14

φ23

φ24

Figure 2.24: A scheme for controlling time-multiplexing ofthe outputs.

The same method is used throughout the chip to generate clocks which ensure that the

modulator frequencies and filter bandwidths differ by a factor of 2 for each channel. An additional

bonus of using Gray code is that digital noise is kept low because only one channel is clocked at a

time, and power consumption is kept to a minimum due to the event-driven nature of the process.

2.22 Wavelet chip slice

The parallel nature of the analog wavelet computation makesthe chip easy to create using

abutting slices of circuitry. We built a bank of eight slices(channels), each containing the logic

to divide down the incoming clock signals, generate the sineand cosine sequences, multiply these

modulating signals with the chip inputs, filter the result with a Gaussian-shaped function, and time-

multiplex the outputs on two buses (one for sine, one for cosine parts). I devised a simple way

to expand the system from eight to sixteen channels coveringthe same total frequency span: In a
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sixteen channel system, each channel has a center frequencyvalue which is
p2 of the neighboring

channel, with the bandwidth of each channel narrowed by a factor of two to account for the fact

that there are twice as many channels squeezed into the same total frequency span. The value

of
p2 = 1:41421 : : : is approximated reasonably well by the integer fraction7=5 = 1:4, which

is only about 1.0% low. The sixteen-channel system is enabled by starting with a master clock

which is first divided down by five and by seven, each result becoming the master clock for one

eight-channel section. The outputs of each eight-channel section are interleaved, and the sampling

scheme of Figure 2.1 must be modified so that the timesteps arehalved so as to allow both sections

to be sampled. The sixteen-channel architecture is shown inFigure 2.25. Wavelet decompositions

of any multiple of eight channels can be realized in a similarmanner.
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Figure 2.25: Sixteen-channel architecture using the 7-to-5 frequency ratio.

Decomposition and reconstruction functions are similar and therefore are able to share the

same multiplier and filter circuitry, and the chip can be configured for either function. Reconstruc-

tion requires sample and hold circuitry on the front end to demultiplex the sine and cosine inputs,

and a capacitive adder at the output. During reconstruction, the Gaussian filters do not shape the
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signal but are used only to reject the high-frequency noise output of the multiplier. A block diagram

showing two channels of the Wavelet Transform chip is shown in Figure 2.26.
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Figure 2.26: The wavelet chip, block diagram.

The circuit layout of the CWT processor fits two sections of eight channels each on a

single 4 mm�6 mm die in a 2µm CMOS p-well process, packaged in an 84-pin PGA. Figure 2.27

is a photomicrograph of the integrated circuit. Test results reported here are from this chip and a

separate test chip containing a single channel.

2.23 Experimental Results

In a test of the modulation multiplication (including the postmultiplication filter), the sinu-

soid modulator is multiplied by a constant input. A binary sequence representing the oversampled

sinusoid is produced at the multiplexer output, and is smoothed into a sine wave by the lowpass

filter. Figure 2.20 shows the FFT of the test chip modulation output before (“o”) and after (“x”)

55



Figure 2.27: Photomicrograph of the mixed-mode continuouswavelet transform processor, a
4 mm�6 mm die size fabricated in a 2µm CMOS p-well process.
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lowpass filtering. Distortion components of the binary sequence are attenuated by the filter to below�60 dB.

Figure 2.28 is an oscilloscope photograph showing the demodulating hardware in action.

The top trace is the input signal, a sine wave generated by a function generator for the purposes of

evaluating the system. The middle trace is the result of multiplying the input by the binary sequence.

The function flips rapidly from positive to negative voltages, which is too fast to be captured in the

oscilloscope photograph where it appears to be two overlapping sinusoids. The bottom trace is

the output after filtering through the Gaussian filters, and is a sinusoid of a frequency which is the

difference between the input and the carrier. The bottom trace is jagged due to the discrete-time

nature of the switched capacitor hardware. Because the output is sampled at the same rate prior to

time-division multiplexing into the output stream, there is no need at this point to apply a smoothing

filter to the output.

Figure 2.28: Signal demodulation using the wavelet chip. The top trace is the input signal. The
middle trace is the input multiplied by the binary sequence.The bottom trace is the output after
filtering.

Figures 2.29 and 2.30 show the measured transfer function (magnitude and phase) of the

Gaussian filter, a cascade of eight single-pole switched capacitor filters, as compared to the predicted

result for an ideal eight-stage lowpass filter cascade. Bandwidth is normalized to the clock frequency

of the filter switches, showing that the shape of the filter is independent of the corner frequency.
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Figure 2.29: Gaussian filter magnitude response: predictedand measured.

The mismatch between channels of a sixteen-channel waveletdecomposition (the setup

of which is described in the previous section) was tested by measuring the peak-to-peak magnitude

of the output of each channelvs. the system input frequency. This measurement clearly showsthe

bandpass nature of the wavelet channels. The response of thefirst eight channels of a sixteen-

channel wavelet output (channel frequencies spaced on a log
p2 scale) to a single sine wave input

of variable frequency is plotted in Figure 2.31, along with the theoretical response (solid lines) in

which the Gaussian function is approximated by cascaded lowpass filters as it is on the chip. The

center frequency of each channel is exact, as it must be by design; the mismatch between filter

bandwidths is negligible, and the mismatch in amplitude is acceptable.

2.24 Extensions of the Research

It is possible to apply the same complex demodulation schemein a system designed to

create anarbitrary mapping of the time-frequency plane, which unlike those depicted in Figure 1.1,

has no regular structure, but a structure determined by the instantaneous information content of the
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Figure 2.31: Wavelet responses to isolated sine wave input.
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input signal itself. One such possible instantaneously computed map is depicted in Figure 2.32. The

purpose of such a mapping is to optimally isolate the information content of the input signal in order

to minimize the amount of bandwidth at the output. For example, if the input signal were a pure

tone, then the output would be restricted to a single filter ofminimum bandwidth and maximum

timespan, sampled appropriately. Although algorithms to compute the optimal arbitrary coverage

of the time-frequency plane are difficult to derive (formulas in [15] are nonintuitive and not recog-

nizably amenable to hardware implementation), a system could potentially be designed based on

heuristic methods.
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Figure 2.32: An arbitrary tiling of the time-frequency plane.

Another possible extension of the work consists of exploring algorithms which can make

use of the demodulated outputs for acoustic pattern (speech/sound) recognition applications. One

benefit of the wavelet processorvs. a standard filterbank approach normally used for speech recog-

nition applications is that the wavelet output preserves phase information in the orthogonal sine and

cosine outputs. Phase information does play an important role in some speech events and many other

kinds of acoustic events (such as music and sonar), and may beused to the advantage of recognition

systems. Another benefit, when the wavelet sampling scheme is used, is that the communication

bandwidth required between the filterbank and the recognition system is greatly reduced, unlike

standard filterbanks in which all channels are sampled at thesame rate or are not demodulated to

reduce the total required bandwidth for sampling. In any situation in which the frontend processor

cannot be close to the recognition system (or other backend processor), this method constitutes an

increase in efficiency and reduction in power in signal transmission.
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2.25 Summary

There is an interest in the signal processing community for hardware to efficiently perform

the Continuous Wavelet Transform for applications such as speech recognition, sound processing,

and data compression. The Wavelet Chip described herein is able to compute both the CWT and its

inverse (wavelet decomposition and reconstruction) in hardware, generating analog, discrete-time

outputs. It is built using a mixed analog/digital architecture which is small and energy-efficient when

compared to possible all-digital implementations. We showthat our system computes a highly linear

analog multiplication with a sine wave of low harmonic distortion by using oversampling techniques

to implement the modulation multiplication. We utilize theCentral Limit Theorem in order to

generate a Gaussian-shaped filter from a cascade of lowpass filter sections. An additional benefit

of the mixed analog/digital approach is precise control over the center frequencies and bandwidths

of the channels. The output of the transform is realized by time-multiplexing the multiresolution

outputs of the filters in an efficient manner. Experimental results on a sixteen-channel prototype

have demonstrated the effectiveness of the new architecture.

The continuous wavelet processor architecture is perhaps given more significance by ig-

noring the “wavelet” aspect of it altogether. That is, thereare uses for the architecture beyond the

decomposition and reconstruction of signals for compression, frequency shifting, and so forth. The

architecture represents a novel method of modulation and demodulation which can be used, to give

an instance, for simple but effective lock-in amplification(extremely high-Q bandpass filtering).

The oversampling method of sine wave generation can be used for precision function generation,

or even a form of parameterized audio synthesis. The use of oversampling methods in this way

to circumvent limitations of analog multiplication is a method that could bear considerably more

scrutiny and has a wide range of potential applications.
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