
Chapter 5

Learning and Speech Recognition

5.1 Automatic Template Learning for Template-Based Correlation

Up to this point, I have not dwelled on the method of obtaininga valid template to use

for the class example in transient classification. The acoustic transient processor is a purely feed-

forward system which has no local hardware for on-chip (or on-board) learning. Speed is of utmost

importance for classification once the templates are known,and so the hardware has been developed

precisely for this purpose. Training can be performed off-line and not in real-time, as long as we can

assume that a classification system does not need to reconfigure or retrain itself during operation

(which may not be a completely valid assumption for speech, but should be true for simple transient

applications). This does not mean that training is or shouldbe entirely separate from the classifier

hardware. In the preceding chapter, I have alluded to “chip in the loop” learning. The method of

“chip in the loop” learning assumes that even the best feed-forward network has nonlinearities and

mismatch, and that the best model of such a system is the system itself. To train the classifier, the

training system sets all the weights (template values), presents the training data to the classifier,

runs the classifier, and captures the output. In an iterativelearning scheme, it adapts the weights

according to some learning rule, then performs the learningcycle again.

The correlation algorithm works under the assumption that atemplate should be a “pro-

totype” of its class: it should have all the characteristicsof an example of its class. This could be

interpreted in several ways. One interpretation is that thetemplate is the average value of many

examples of the class, aligned by a segmentation procedure.Another interpretation is that the tem-

plate contains features which correlate positively with features of all examples of its own class, but

may be missing features which would correlate positively with examples of a different class, thus

171

decreasing the likelihood of a false identification of the second class. Thus, the template may not

look anything like the decomposed class examples against which it is correlated, but produces an

output which is much larger than that for any other class input. Class averaging requires the least

amount of training, and can be done with only the frontend filterbank system as part of the training

system. Once the idea of simple class averages is abandoned and a more robust solution sought on

the basis of standard pattern recognition, a number of possibilities arise and must be investigated for

their applicability to the transient classification problem. This chapter provides an overview of what

training methods are available and how they may be applied tothe acoustic transient processor.

5.2 Average-Value Templates

The first interpretation of the form of the template, that of class average, is the one that

I have been assuming throughout the text to this point. Average-value template learning computes

the baseline templatepz for classz aspz(n;m) = 1K KXk=1 yz;k(t0 � n;m) 8n;m (5.1)

where the training set containsK examples of classz. The examples are distinct and their bound-

aries known, and they are aligned to some timet0 relative to the start of the event. The valuesyz;k
are the response of the frontend filterbank to thek-th example of classz. This is at least a simple

method to implement. The main difficulty in implementation arises from the need to accurately

segment each example of the training set used to generate thetemplate. The average of examples

which are not properly aligned quickly becomes flat and featureless. Unfortunately, all acoustic

signals have some temporal variation, and so the average value will always become increasingly flat

and featureless away from the point of alignment.

To give a concrete example: The sound of a door closing (one ofthe transient classes in

our recorded set) consists of two separate events: The soundof the door latch striking the metal

plate, followed by the sound of the door itself bumping against the frame. The result of the two

sounds occurring in sequence is the familiar “ker-chunk” ofa closing door. Either of the two sounds,

if separated from the other, fail to sound like a door. Clearly the sound that we recognize as that

of a door closing is as much dependent on the juxtaposition ofthese two events as it is on the

events themselves. On the other hand, the timing between thetwo events depends on the radial

velocity of the door, which may vary considerably from one event to the next. Suppose the recorded

transient examples are in every way exact except for the distance between the door latch and door

172

frame events (i.e., the speed at which the door is closed). Assume that the recorded examples are

perfectly aligned on the door latch event. When they are all averaged together and copied to the

template, the door latch event will remain distinct while the door frame event will be spread out

into a Gaussian shape describing the probability of timing of the door frame event relative to the

door latch event rather than describing anything about the door frame event itself. This does not

invalidate the average-template method. But it does show how template averaging can lose valuable

information about the transient class.

In the case of the door it should be obvious that the direct template method is not so-

phisticated enough to capture all the nuances of a closing door. Another way to put this is that a

closing door is not strictly an acoustic transient, but is a composite event which displays some of

the properties of complicated acoustic events such as speech. The closing door, by the way, is not

an isolated example. Many such composite events exist in nature. A piano key is another example

of a composite event: The sound of one part of the wooden hammer mechanism striking another

occurs so close to the sound emanating from the vibrating strings that it is impossible to separate

the two sounds perceptually. But the sound of a piano key withthe transient removed simply does

not sound much like a piano.

The example just described shows that ensemble averaging can produce a probability

distribution which, while masking features on a smaller time scale, can contribute important infor-

mation about the relative timing of events on a larger time scale. This can be repeated on many

hierarchical levels, possibly down to the level of zero-crossings (which in the acoustic transient

processor we have eliminated by smoothing the signal out to a2 ms time scale). By creating the

acoustic transient processor as a one-level, non-hierarchical architecture, we are forced to find a

single time scale which is optimal for transient processingrather than making use of information

at all scales. In that sense, what the acoustic transient processor is missing is a wavelet-like in-

terpretation of its input. The situation is illustrative ofwhy a filterbank in and of itself is not a

wavelet transformer: In the template correlator, the filterbank outputs are sampled evenly across the

spectrum, which forces the system either to oversample the low frequency channels or undersample

the high frequency channels. Encoding a wavelet-like representation in the template correlator is a

problem without an obvious solution; at very best, it is inconvenient to format into hardware. But

the wavelet representation doesn’t tell the whole story. Inthe continuous wavelet representation,

larger time scales are captured by filtering lower frequencybands. But if we wish to interpret the

behavior of a complex acoustic event over a period of one second, we certainly do not mean that

we wish to view the signal spectrum in the 1 Hz range. In this case, the interpretation is more

173

like a discrete wavelet transform where information is actively pushed from one dilation into the

next, but where each filtering function is optimized for a particular transient event at each dilation

(timescale). Those functions may be approximated by template correlators to give a high level of

flexibility to function selection, but the templates no longer encode any function as simple as an

ensemble average. What they encode are functions which extract features at each dilation which,

collectively over all dilations, optimally isolate one acoustic class from all other classes.

Clearly, capturing the nuances of composite acoustic events requires that composite sounds

be broken down into their fundamental, unchanging parts at each timescale. The template correla-

tion should be affected by temporal shifts as little as possible, and probabilities between the timing

of fundamental events probably should be dealt with separately, in a hierarchical manner, by using

the outputs of the current timescale as the input to the next timescale. The largest timescale hasZ
templates (one for each class) and ideally separates the acoustic classes in a robust manner. The

outputs of all timescales up to the last are effectively “hidden nodes” whose outputs do not neces-

sarily have an obvious physical meaning. They are like hidden nodes in a neural network, and may

be treated in a similar manner.

5.3 Deterministic Methods: Statistical Component Analysis

A major difficulty with finding the fundamental components ofcomposite acoustic events

lies in the fact that the fundamental transient parts are notnecessarily separable. Training a network

to learn to separate classes is made difficult when the training examples cannot be isolated from one

another. A related problem is perhaps the most problematic of all for ensemble average training: the

system is trained to recognize not only features which are unique to each transient class, but also

features which are common to many or all of the transient classes. Unfortunately, these common

features can dominate the structure of the sound input. Mosttransients are characterized by a sharp

rise in total energy followed by a slower decay back to zero. Proper training should suppress the

similarities and accentuate the differences between transient classes.

Fortunately, the techniques ofPrinciple Component Analysis (PCA) andIndependent

Component Analysis (ICA) address some of these problems. They provide a mathematical frame-

work for addressing the issues mentioned above. ICA operates under the assumption that every

signal is formed of statistically independent parts which have been put together in various weighted

distributions. The ICA algorithm determines what are the independent components of its input

(after presentation of many training examples, of course),but its inverse is adetector of those fea-

174

tures. Under many situations, one of which includes the template correlator, the independent feature

detector is easier to determine than the independent components themselves.

PCA and ICA tend to give qualitatively similar results, and formulating each in the frame-

work of acoustic transient classification encounters the same problems, so I will focus here on only

one of the two methods, ICA. Bell and Sejnowski [71, 72] have shown how ICA may be applied as

a model of visual and auditory perception.

Independent Component Analysis is a purely linear construct. Is assumes that all inputs

are a linear mixture of statistically independent parts, jumbled together in different amounts by

some unknown natural process. Because the mixture is linear, the generating process is an unknown

matrix of weights determining how much of each independent source is added to the output:x = As (5.2)

wherex are the data presented to the input of the classifier, having been produced by a matrix

of independent source vectorsA and a mixing vectors (for simplicity, we assume thats is one-

dimensional). Bell and Sejnowski present the problem as on of blind source separation; that is, the

goal is to find the mixing matrixs and thus determine the original independent sourcesA. This is

useful, for example, to separate one speaker’s voice from others in the background of a recording of

a crowded room. ICA recovers the sources by applying the inverse of the problem,u =Wx; (5.3)

whereu is a vector of weights which is a scaled and permuted version of s (the linear system cannot

differentiate between different scales and orders of the input vectors, nor does it need to for the blind

signal separation problem), and the inverse ofW yields the similarly scaled and permuted version

of matrix A: u =WAs: (5.4)

A classification system poses the same problem in a differentway. In an ideal situation, each class

of input is independent from the rest. Each class is one independent source, and real examples

presented to the system consist of the class independent source (the “prototype”) mixed with lesser

amounts of other sources (including noise). The classifier itself isW, and given an input setx, it

produces an outputu, consisting of elementsui representing the classification result for classi. In

the ideal case,u is very nearly a binary vector which is (nearly) one for the elementi of u which

corresponds to the class to which inputx belongs, and (nearly) zero elsewhere. Consequently,

Equation (5.4) which forms the core of the ICA algorithm is itself a classifier.

175

In a more realistic case, transient events are themselves composed of other independent

sources. As mentioned in the previous section, many transients have similar structures. Roughly

speaking, the similar structures are independent components which are shared between transient

classes, and there are other independent components which correspond to structures unique to cer-

tain classes. Each class produces a unique outputu representing the unique mixture of independent

sources which encode that acoustic transient class.

The acoustic transient processor baseline algorithm (4.1)is a linear matrix multiplication

and so is directly applicable to ICA. The matrixW is the set of templatesp, where each template

is a one-dimensional vector of values, ignoring the relationships between the two dimensions of

time and frequency. From the discussion above, it should be clear that in an ICA framework each

templatep encodes an independent component of the source, and does notencode a single class dis-

criminator function unless the class happens to be representable by a single independent component

(which would be extremely rare in practice). The outputc of all the template correlators encodes

the instantaneous mixtures of independent components present in the input.

It should be noted that standard ICA theory assumes a square matrix W; that is, the as-

sumption is that there are as many independent sources as there are weights in the system (for each

template). However, the final weight update rule derived does not require a square matrixW. Indeed,

logically the size ofW should correspond exactly to the true number of independentcomponents of

the source. When there are more weights than sources, the encoding is redundant but should have

the positive effect of increasing system robustness in the presence of noise; the matrixA may be

recovered if necessary using the matrix pseudo-inverse.

The weight update rule is [72]:�wij = �wij + 2 tanh (ui)Xk wkjuk (5.5)

where� is a learning constant. The weight update rule is similar to Hebbian learning.

Applied directly to the transient test data, this rule does an excellent job in breaking up

the input into distinct output patterns. There are several major problems with the application of the

ICA technique, however:

1. Equation (5.5) is anunsupervised learning rule. Because the true independent components

of the input are unknown, knowing the class of the input is unhelpful to the algorithm. The

problem of classification learning is really deferred, not solved. ICA can be viewed as a way

to warp the input space into a form more amenable to simple classification. When there are

176

fewer outputs than weights per template, it does so by reducing the dimensionality of the

input space and in that way is very similar to Linear Discriminant Analysis (LDA) techniques

Initialization is a problem, but generally satisfactory performance results from initializing the

templates with the original ensemble-average values.

2. The weight update rule applies only to continuously-valued weights. No ICA weight-update

rule has been demonstrated for binary valued weights. This problem occurs for many kinds

of learning systems, including the backpropagation algorithm for neural networks. All of

these algorithms are related in one way or another to gradient descent, which requires an

estimate of the slope of an error surface with respect to the derivatives of the weights. If

the weights are binary, their derivatives are discontinuous functions, and an error surface

cannot be evaluated. Solutions usually involve using continuous-valued weights but passing

them through a sigmoidal function such as a hyperbolic tangent which has a well-defined

derivative but can approximate a step function by scaling the x-axis. This tends to force

weights to resolve to binary values but leaves open issues such as how to change the sigmoid

scaling during training. This solution requires that training be performed on a model of the

system rather than the system itself if the system (such as our acoustic transient processor

hardware) contains only binary values. Trinary values are,naturally, even more complicated

to deal with.

3. The ICA update rule is static in time and is best suited for static applications such as natural

scene analysis. It does not adequately deal with statistical correlation in time that arises

regularly in a system such as the acoustic transient classifier. It is not sufficiently powerful

enough to know that independent components appear and disappear with transitions from one

to another. A temporally-based ICA algorithm cannot be blind to its own history and must

take such information into account. It may even require sufficient delay so as to observe

both past and future inputs around the input which causes theweight update. This would

significantly increase the complexity of the system.

5.4 Support Vector Machines

Another promising training method is the use ofSupport Vector Machines [73]. The

theory of Support Vector Machines (SVM) provides a statistical framework for pattern classification

for which most standard methods such as multilayer neural networks and radial basis functions are

177

a subset. The main difference is that SVM theory formulates adeterministic algorithm for learning

based on Lagrangian multipliers. Solutions are iterative (because large nonlinear networks rarely

have symbolic solutions) but not haphazard: quadratic programming methods can find the optimal

separating hyperplanes for any classification task, given properly tagged training data. As usual, of

course, it is necessary to choose the optimal complexity of the feedforward classifier such that it

generalizes well and does not over-fit the data, but the ease of quadratic programming allows one

to train and test networks of different complexity and determine exactly what system complexity

yields the best generalization in a purely deterministic sense.

There are only two failures of standard SVM to meet the needs of the acoustic transient

processor, and they are the same ones encountered with Independent Component Analysis: The

temporal nature of the problem which gives rise to a high degree of correlation between successive

values of the outputs in time, and the binary (or trinary) nature of the template values which plays

havoc with learning algorithms due to the presence of discontinuous derivatives. Hopefully, exten-

sions of SVM exist which can include both these cases. Also, SVM training uses a model of the

feed-forward classification system and should be reformulated to allow the physical system to be its

own model (as with “chip in the loop” learning) to account forproperties of the real system which

may not be captured in a simple model.

5.5 Heuristic Methods (Unnikrishnan/Hopfield)

Speech signals are quite complicated and contain transients as well as long-term (vowel)

events of variable length. Successful recognition of transients can be viewed as a step towards

recognition of continuous speech. Another important step is the detection of vowel formants. When

separated from the more general task of speech recognition,it is a relatively easy problem, particu-

larly when the vocabulary is small. The task of digit recognition provides a useful small-vocabulary

system which has been used often as a benchmark for speech recognition systems. One system op-

timized to the task of continuous-speech digit recognitionis the architecture by Hopfield, Tank, and

Unnikrishnan [68, 69]. The architecture of [68] achieves a 99.3% recognition rate on continuous

spoken digits when trained for a single speaker, and a similar architecture reported in [69] achieves

97.5% in a speaker-independent task (male speakers only). These figures are for the author’s own

recorded database, which is similar to the industry standard TIDIGITS, a database of both isolated

and continuously-spoken digits, using male, female, and child speakers from around the country.

The authors claim that their architecture was designed withanalog implementation in

178

mind, although the project never went further than the software simulation stage. The frontend to

the system is quite similar to the ATP frontend (see Section 1.2.1): a filterbank of bandpass filters

(in this case, 32) followed by rectification and smoothing, with the channel outputs modified by a

center-surround computation (which in our tests of ATP architectures resulted in system behavior

almost identical to that using pairwise channel differences).

2
1

10

2
1

10

2
1

10

0 1 9

1

2

16

2

1

16

C
O

N
N

E
C

T
IO

N
 M

A
T

R
IX

R
E

C
O

G
N

IT
IO

N
U

N
IT

S

S
P

E
E

C
H

 S
IG

N
A

L

FILTERS
BANDPASS

TIME
DELAYSFEATURE

DETECTORS

Figure 5.1: Unnikrishnan, Hopfield, and Tank correlator architecture, block diagram.

The correlation between input and template is also similar to that of the ATP, except the

input signal is binarized, not the template. However, thereare some key differences by which the

Unnikrishnan et al. architecture copes with time variations in the input pattern: it treats event times

as normally distributed variations around a fixed mean. Input signals from each (frequency) channel

travel through a delay line where they diffuse as they travel, and the correlation is computed at ten

“taps” spaced at regular time intervals (rather than at every time sample as in the ATP). The form of

the correlation is (following the naming conventions of Equation (1.2)):cz[t] = MXm=1 NXn=1 TX�=1x[t� n;m] g[�; n] pz [�;m] (5.6)

179

Figure 5.2: Unnikrishnanet al. correlator simulation results on isolated digit recognition.

Figure 5.3: Response of architecture in simulation to the same input as Figure 5.2 but with white
noise added to the input. The system remains robust in the presence of noise.

180

whereT is the number of taps, andg[�] is the set of amplitudes defining the Gaussian diffusion

profile at each tap. Here I have taken the liberty of replacinga continuous integral, as it is presented

in the original paper ([68], Equation (3)), with a discrete sum, as it is implemented in their software

simulation. The Gaussian diffusion kernels (Figure 5.4) follow the equationg(n; �) = 1p2�� exp �(� � n�delay)22�2 !
(5.7)

where� = �20(n � bN=2c)2 defines the Gaussian width at each tap. Parameters for scaling the

Gaussian width�0 and the spacing between taps�delay are the main free variables of the system. If

1
2

3
4

5
6

7
8

9

Taps (n)

0.0 0.40.2 0.6
τ (sec)

Figure 5.4: Gaussian kernels which diffuse the input in the Unnikrishnanet al. model.

we note that the weights and the Gaussian profiles are fixed, then we can define a function in which

the weights are premultiplied by the Gaussian profiles to generate a new set of weights:p0z[n;m] = TX�=1 g[�; n] pz [�;m]; (5.8)

then the correlation takes a form equivalent to Equation (1.2):cz[t] = MXm=1 NXn=1x[t� n;m] p0z[n;m]: (5.9)

This reveals the close connection with the ATP algorithm. Inthe previous section of this chapter, I

explained how ensemble averaging over many inputs can produce templates which encode the prob-

ability distribution of the timing of events relative to thepoint of segmentation. This architecture

does something very similar but assumes that the timing probability distributions are normal and

encodes the normal distribution as a function (the Gaussiankernels) rather than part of the template.

The arrangement of the equation in (5.9) moves the Gaussian functions back into the template. The

181

step may be regarded as an improvement or not depending on thecapabilities of the hardware. The

tapped-delay model of Unnikrishnan et al. requires much less storage per template, but on the other

hand it depends heavily on the Gaussian multiplications. The authors envision the Gaussian kernel

multiplications as diffusion profiles in an analog circuit;however, the model shows diffusion oc-

curring both directions in time, an impossibility for a circuit implemented as a physically diffuse

medium (such as the bucket brigade). We have emphasized throughout the thesis that analog mul-

tiplication is difficult and imprecise. The architecture chosen for the acoustic transient processor

is one which avoids the problem of analog multiplication andit is not unreasonable to assume that

the above equation, which casts the Unnikrishnanet al. model into the framework of the acoustic

transient processor, is a reasonable compromise between system size and accuracy. It remains to

be investigated whether the performance of this algorithm remains high if the same manipulations

applied to the ATP algorithm are applied to it; namely, if theweights take binary values instead of,

or in addition to, the input. If so, then an ATP-like architecture can be used to implement and test

the algorithm.

The scheme used by the Unnikrishnanet al. architecture for training the system lies some-

where between the simplicity of ensemble averaging and the complexity of independent component

analysis. Segmentation of each input example is performed by hand, but the system learns the cor-

rect position of the segmentation through a bootstrapping method. Segmentation is defined as the

point near or at the end of the spoken word at which the detector should signal a correct classifi-

cation. The set of weights for each word recognizer is updated with a gradient-descent equation

(perceptron rule), where the word recognizer matching the training word presented is updated to

increase its output at the segmentation point, while the word recognizers for all other words are

updated to decrease their outputs at the segmentation pointand also at other fixed intervals during

the presentation of the input training example. When the training is near completion, the system can

use its own output to determine the segmentation point, thusallowing it to overcome small errors in

the estimated segmentation. The negative training on out-of-class weights helps the system isolate

those parts of each class which are different from all the others, unlike ensemble averaging which

will additionally encode those features which are common toall transient classes.

Because spoken digits are not transients, they have timespans on the order of half a second

or longer, requiring a delay length (and template size) morethan four times that of the ATP. This

is because the Unnikrishnanet al. architecture is not hierarchical. It is not even phonetic, which is

a simple form of hierarchy used by many systems. If a phoneme occurs twice in the same word,

or if the same phoneme is shared among several words, the stored weights encoding the recognizer

182

of that phoneme are duplicated for every instance. A hierarchical structure could easily remove

that redundancy. Using one correlator perphoneme and employing a state-based model to detect

transitions between phonetic states is a much more efficientuse of hardware, and should create a

system more robust to differences in the timespan of different instances of the same spoken digit.

5.6 Biologically-Inspired Methods

A potential use of the acoustic transient processor is the investigation of acoustic process-

ing in the brain. Recent research by Shamma [70] shows that certain areas of the mammalian audi-

tory cortex encode time-frequency maps in neural “wetware.” Shamma subjected neural recordings

to analysis and was able to produce the time-frequency mapping encoded by single neuron outputs.

These maps are qualitatively similar to spatial mappings ofthe independent components of natural

images as produced by Bell and Sejnowski [72]. A large proportion of both the neural and nat-

ural scene ICA outputs have Gabor logon-like characteristics (that is, sine- and cosine-modulated

Gaussians in 2-dimensional space). This is not entirely surprising given the relationship of all three

systems (wavelets, independent component analysis, and biological neural processing) to informa-

tion theory and the efficient representation of signals.

A typical example of a map in the auditory cortex is shown in Figure 5.5. The figure

represents the level of neural activity in response to auditory signals over a range of frequency and

change of frequency with time. The neural activity is measured in spikes per second and averaged

over numerous trials. Most of the map is unencoded—that is, the neuron does not respond at all, ei-

ther with excitation or inhibition, to inputs in that range of time and frequency. Other areas produce

an excitatory response (red) and others, an inhibitory response (blue). In the figure, the mapping is

tuned to a falling tone. If the mapping represents the input directly (that is, without differentiation

in time or frequency), then the mapping is strongly tuned to aparticular falling formant but at the

same time is strongly inhibiting a tone slightly below it in frequency and/or slightly lagging in time.

On the other hand, if the mapping represents a channel-differenced encoding of the input, then the

mapping represents a simple response to a single falling tone. A simple model of the distributions

which covers most cases observed in the auditory cortex can be formed by one or two Gaussians

encoding regions of either odd symmetry, as shown in the figure, or even symmetry consisting of

a large excitatory response surrounded by inhibitory side lobes. The angle of the Gaussians cor-

responds to the rate of the rise or drop. At the extremes, a Gaussian with no rotation (horizontal)

encodes a constant tone, and a vertically-aligned Gaussianencodes a very fast transient or some

183

0
20

40
60 0

20

40

60−1

−0.5

0

0.5

1

frequency
time

10 20 30 40 50 60

10

20

30

40

50

60

time

fr
eq

ue
nc

y

Figure 5.5: Example of a biologically-inspired template encoding a falling tone of specific fre-
quency and rate.left: Continuous-valued encoding.right: Trinary encoding.

kind of instantaneous spectral information. The Gaussian is defined by the equation12�pjU j exp �(x� x0)U(x� x0)T � (5.10)

wherex is a 2-dimensional vector in time and frequency,x0 is the distribution center, andU is a

covariance matrix U = 24 (�t)2 �� (�f)2 35 (5.11)

having components for variance in time�t, in frequency�f , and the covariance coefficient�, which

effectively represents a rotation of the distribution.

The acoustic transient architecture algorithm provides a way to actively test theories as-

sociated with the observations from the auditory cortex. Inparticular, the trinary encoding of the

digital transient classifier hardware can encode regions ofpositive and negative response inside a

region of zero response, as shown on the right-hand side of Figure 5.5. This is essentially an attempt

to map the correlation algorithm onto a neuron, where each location of the template maps more or

less directly to a synapse connection between the delayed output of the cochlear frequency mapping

and the neuron under study in the auditory cortex. The neuronis more efficient than the correlator

because it presumably uses no more synaptic connections than necessary for each response. It also

has a higher resolution than the correlator because the synaptic weights encode continuous-valued

weights: a neat little trick of nature that is, as noted in previous chapters, rather difficult to duplicate

in silicon. Also, the neurons of the brain make optimally efficient use of the nonlinearities inherent

184

to the system, whereas the correlator is a linear system (certain methods of training, such as inde-

pendent component analysis, depend on this fact). Despite the differences between a real neuron

and its model implemented as a linear, trinary correlation,we can expect that the system is in most

ways like the acoustic transient system and should therefore remain reasonably robust after the same

algorithmic manipulations.

185

Conclusion
This thesis has sought to portray analog VLSI as a medium for computation and a viable

alternative to digital signal processing. These aspects ofanalog design were taken for granted many

years ago before the start of the so-called “computer revolution,” but today require justification in

an increasingly high-speed digital world.

Our use of the Analog VLSI medium concentrates on acoustic signal processing. We

show how efficient use of mixed-mode processing, translinear circuit design, and other techniques

can lead to compact, power-efficient systems which can rivalDSPs in many aspects of performance.

What we espouse is a view of system design which starts at the level of algorithms and looks at

all ways, both analog, digital, or mixtures of both, which can best implement a specific system

under the constraint of limited resources, namely, size andpower. I believe that there is still a

need for compact, power-efficient analog computing systemseven in a primarily digital world. The

conflicting demands of energy efficiency and raw processing power must be satisfied, and so system

design must avoid many of the pitfalls of brute-force digital design and achieve ever greater levels

of finesse from devices to circuits to algorithms and systems.

In this thesis, we have demonstrated the application of efficient analog and mixed-signal

design to several acoustic signal processing systems, starting with ways of perceiving and mapping

the time-frequency domain. Throughout the thesis, we have shown how each system deals with

this mapping, from wavelet transforms to filterbanks and pattern classification systems. We have

“zoomed in” from this view of signal processing to look at specific circuits for implementing time-

frequency transformations of acoustic inputs and acousticpattern recognition and classification.

And we have “zoomed out” from this view to look at the larger picture of learning machines, speech

recognition, and biological models of neural processing. We could continue on in either direction,

from transistor physics to the human brain, because time-frequency mapping of acoustic data occurs

ubiquitously in both nature and in engineering. At this important juncture of circuits, acoustics,

biology, and machine and human learning, we hope we have provided some valuable insights and

pointed the way to better engineering design.

186

