Chapter 5

Learning and Speech Recognition

5.1 Automatic Template Learning for Template-Based Correlation

Up to this point, | have not dwelled on the method of obtainingalid template to use
for the class example in transient classification. The g@otransient processor is a purely feed-
forward system which has no local hardware for on-chip (eboard) learning. Speed is of utmost
importance for classification once the templates are knawth so the hardware has been developed
precisely for this purpose. Training can be performediof-and not in real-time, as long as we can
assume that a classification system does not need to reaenfiguetrain itself during operation
(which may not be a completely valid assumption for speeghsiwould be true for simple transient
applications). This does not mean that training is or shbele@ntirely separate from the classifier
hardware. In the preceding chapter, | have alluded to “ahifhé loop” learning. The method of
“chip in the loop” learning assumes that even the best feeddrd network has nonlinearities and
mismatch, and that the best model of such a system is thensytsielf. To train the classifier, the
training system sets all the weights (template valueskamis the training data to the classifier,
runs the classifier, and captures the output. In an iter&maming scheme, it adapts the weights
according to some learning rule, then performs the learoyate again.

The correlation algorithm works under the assumption thengplate should be a “pro-
totype” of its class: it should have all the characterist€sin example of its class. This could be
interpreted in several ways. One interpretation is thatténeplate is the average value of many
examples of the class, aligned by a segmentation proceduagher interpretation is that the tem-
plate contains features which correlate positively withtfiees of all examples of its own class, but
may be missing features which would correlate positivelthveixamples of a different class, thus
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decreasing the likelihood of a false identification of theas®l class. Thus, the template may not
look anything like the decomposed class examples againistvithis correlated, but produces an

output which is much larger than that for any other classtinflass averaging requires the least
amount of training, and can be done with only the frontendrfilank system as part of the training

system. Once the idea of simple class averages is abandodedmaore robust solution sought on

the basis of standard pattern recognition, a number ofpiigss arise and must be investigated for
their applicability to the transient classification prahleThis chapter provides an overview of what
training methods are available and how they may be appliéitetacoustic transient processor.

5.2 Average-Value Templates

The first interpretation of the form of the template, that lafss average, is the one that
| have been assuming throughout the text to this point. Ayeeralue template learning computes
the baseline templage, for classz as

1 K
Pz (na m) = E Z yz,k(to -n, m) Vn,m (51)
k=1

where the training set contaid§ examples of class. The examples are distinct and their bound-
aries known, and they are aligned to some ttgeelative to the start of the event. The valugs;
are the response of the frontend filterbank to &kt example of class. This is at least a simple
method to implement. The main difficulty in implementatiomsas from the need to accurately
segment each example of the training set used to generatentipdate. The average of examples
which are not properly aligned quickly becomes flat and fedtss. Unfortunately, all acoustic
signals have some temporal variation, and so the average wall always become increasingly flat
and featureless away from the point of alignment.

To give a concrete example: The sound of a door closing (otieeafransient classes in
our recorded set) consists of two separate events: The safuthé door latch striking the metal
plate, followed by the sound of the door itself bumping agathe frame. The result of the two
sounds occurring in sequence is the familiar “ker-chunld ofosing door. Either of the two sounds,
if separated from the other, fail to sound like a door. Cledne sound that we recognize as that
of a door closing is as much dependent on the juxtapositiothede two events as it is on the
events themselves. On the other hand, the timing betweetwthevents depends on the radial
velocity of the door, which may vary considerably from oneremo the next. Suppose the recorded
transient examples are in every way exact except for thardistbetween the door latch and door
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frame eventsi(e., the speed at which the door is closed). Assume that thededaxamples are
perfectly aligned on the door latch event. When they are\ataged together and copied to the
template, the door latch event will remain distinct while tthoor frame event will be spread out
into a Gaussian shape describing the probability of timihthe door frame event relative to the
door latch event rather than describing anything about toe &tame event itself. This does not
invalidate the average-template method. But it does shewtbmplate averaging can lose valuable
information about the transient class.

In the case of the door it should be obvious that the direcptat® method is not so-
phisticated enough to capture all the nuances of a closing denother way to put this is that a
closing door is not strictly an acoustic transient, but iomposite event which displays some of
the properties of complicated acoustic events such aslsp@ée closing door, by the way, is not
an isolated example. Many such composite events exist urexaf\ piano key is another example
of a composite event: The sound of one part of the wooden hamraehanism striking another
occurs so close to the sound emanating from the vibratimggstithat it is impossible to separate
the two sounds perceptually. But the sound of a piano key thightransient removed simply does
not sound much like a piano.

The example just described shows that ensemble averagmgroduce a probability
distribution which, while masking features on a smallerdigstale, can contribute important infor-
mation about the relative timing of events on a larger timaesc This can be repeated on many
hierarchical levels, possibly down to the level of zerossings (which in the acoustic transient
processor we have eliminated by smoothing the signal outZzma time scale). By creating the
acoustic transient processor as a one-level, non-hiecatcarchitecture, we are forced to find a
single time scale which is optimal for transient processither than making use of information
at all scales. In that sense, what the acoustic transieegpsor is missing is a wavelet-like in-
terpretation of its input. The situation is illustrative why a filterbank in and of itself is not a
wavelet transformer: In the template correlator, the gk outputs are sampled evenly across the
spectrum, which forces the system either to oversampletihé&e&quency channels or undersample
the high frequency channels. Encoding a wavelet-like sepr&tion in the template correlator is a
problem without an obvious solution; at very best, it is imoenient to format into hardware. But
the wavelet representation doesn't tell the whole storythncontinuous wavelet representation,
larger time scales are captured by filtering lower frequdrayds. But if we wish to interpret the
behavior of a complex acoustic event over a period of onergtame certainly do not mean that
we wish to view the signal spectrum in the 1 Hz range. In thisecdhe interpretation is more
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like a discrete wavelet transform where information isvadyi pushed from one dilation into the

next, but where each filtering function is optimized for atjgaitar transient event at each dilation

(timescale). Those functions may be approximated by teglarrelators to give a high level of

flexibility to function selection, but the templates no lengncode any function as simple as an
ensemble average. What they encode are functions whichceXératures at each dilation which,

collectively over all dilations, optimally isolate one arstic class from all other classes.

Clearly, capturing the nuances of composite acoustic eveqtiires that composite sounds
be broken down into their fundamental, unchanging partaeth émescale. The template correla-
tion should be affected by temporal shifts as little as gadesand probabilities between the timing
of fundamental events probably should be dealt with seplgrah a hierarchical manner, by using
the outputs of the current timescale as the input to the imaeistale. The largest timescale Has
templates (one for each class) and ideally separates thestacalasses in a robust manner. The
outputs of all timescales up to the last are effectively teid nodes” whose outputs do not neces-
sarily have an obvious physical meaning. They are like mdumdes in a neural network, and may

be treated in a similar manner.

5.3 Deterministic Methods: Statistical Component Analysis

A major difficulty with finding the fundamental componentscoimposite acoustic events
lies in the fact that the fundamental transient parts ar@ecessarily separable. Training a network
to learn to separate classes is made difficult when the tgaexamples cannot be isolated from one
another. A related problem is perhaps the most problembdilt for ensemble average training: the
system is trained to recognize not only features which amguento each transient class, but also
features which are common to many or all of the transientselss Unfortunately, these common
features can dominate the structure of the sound input. Werssients are characterized by a sharp
rise in total energy followed by a slower decay back to zemmp®r training should suppress the
similarities and accentuate the differences betweeniganslasses.

Fortunately, the techniques @finciple Component Analysis (PCA) andIndependent
Component Analysis (ICA) address some of these problems. They provide a matieahftlame-
work for addressing the issues mentioned above. ICA operatder the assumption that every
signal is formed of statistically independent parts whiakiehbeen put together in various weighted
distributions. The ICA algorithm determines what are thdejmendent components of its input
(after presentation of many training examples, of coutsaf) jtsinverse is adetector of those fea-
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tures. Under many situations, one of which includes the tat@gorrelator, the independent feature
detector is easier to determine than the independent caenpothemselves.

PCA and ICA tend to give qualitatively similar results, andniulating each in the frame-
work of acoustic transient classification encounters tiheesaroblems, so | will focus here on only
one of the two methods, ICA. Bell and Sejnowski [71, 72] havewa how ICA may be applied as
a model of visual and auditory perception.

Independent Component Analysis is a purely linear constigcassumes that all inputs
are a linear mixture of statistically independent partsbled together in different amounts by
some unknown natural process. Because the mixture is litheagenerating process is an unknown

matrix of weights determining how much of each independeuntce is added to the output:
x = As (5.2)

wherez are the data presented to the input of the classifier, hawem Iproduced by a matrix
of independent source vectofsand a mixing vector (for simplicity, we assume that is one-
dimensional). Bell and Sejnowski present the problem adf dafilad source separation; that is, the
goal is to find the mixing matrix and thus determine the original independent soufceBhis is
useful, for example, to separate one speaker’s voice frorsin the background of a recording of
a crowded room. ICA recovers the sources by applying thesevef the problem,

u= Wz, (5.3)

whereu is a vector of weights which is a scaled and permuted verdior{tbe linear system cannot
differentiate between different scales and orders of thetimectors, nor does it need to for the blind
signal separation problem), and the invers&\bfields the similarly scaled and permuted version
of matrix A:

u = WAs. (5.4)

A classification system poses the same problem in a diffevagt In an ideal situation, each class
of input is independent from the rest. Each class is one iniggnt source, and real examples
presented to the system consist of the class independertesloe “prototype”) mixed with lesser
amounts of other sources (including noise). The classieifiis W, and given an input set, it
produces an output, consisting of elements; representing the classification result for clast

the ideal casey is very nearly a binary vector which is (nearly) one for theneént; of » which
corresponds to the class to which inputelongs, and (nearly) zero elsewhere. Consequently,
Equation (5.4) which forms the core of the ICA algorithm &eif a classifier.
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In a more realistic case, transient events are themselvapased of other independent
sources. As mentioned in the previous section, many tnatssheave similar structures. Roughly
speaking, the similar structures are independent comp®menich are shared between transient
classes, and there are other independent components vanielspond to structures unique to cer-
tain classes. Each class produces a unique outpepresenting the unique mixture of independent
sources which encode that acoustic transient class.

The acoustic transient processor baseline algorithm {@d.)inear matrix multiplication
and so is directly applicable to ICA. The matii¥ is the set of templates, where each template
is a one-dimensional vector of values, ignoring the refetiops between the two dimensions of
time and frequency. From the discussion above, it shouldda that in an ICA framework each
templatep encodes an independent component of the source, and daascode a single class dis-
criminator function unless the class happens to be repiasierby a single independent component
(which would be extremely rare in practice). The outpuif all the template correlators encodes
the instantaneous mixtures of independent componentsrrigsthe input.

It should be noted that standard ICA theory assumes a squatrexW; that is, the as-
sumption is that there are as many independent sourcesrasatieenveights in the system (for each
template). However, the final weight update rule derivedsaad require a square matkiX. Indeed,
logically the size ofV should correspond exactly to the true number of indepercamponents of
the source. When there are more weights than sources, thdirgds redundant but should have
the positive effect of increasing system robustness in teegmce of noise; the matrix may be
recovered if necessary using the matrix pseudo-inverse.

The weight update rule is [72]:

Aw;j = pw;j + 2 tanh (u;) Z WUk (5.5)
k

wherey is a learning constant. The weight update rule is similarblbian learning.
Applied directly to the transient test data, this rule doe®xcellent job in breaking up
the input into distinct output patterns. There are sevegjbrproblems with the application of the

ICA technique, however:

1. Equation (5.5) is amnsupervised learning rule. Because the true independent components
of the input are unknown, knowing the class of the input isalpful to the algorithm. The
problem of classification learning is really deferred, ralved. ICA can be viewed as a way
to warp the input space into a form more amenable to simpksifieation. When there are
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fewer outputs than weights per template, it does so by raduitie dimensionality of the
input space and in that way is very similar to Linear Discriamit Analysis (LDA) techniques
Initialization is a problem, but generally satisfactoryfpemance results from initializing the
templates with the original ensemble-average values.

2. The weight update rule applies only to continuously-gdlweights. No ICA weight-update
rule has been demonstrated for binary valued weights. Troisigm occurs for many kinds
of learning systems, including the backpropagation aligorifor neural networks. All of
these algorithms are related in one way or another to gradiescent, which requires an
estimate of the slope of an error surface with respect to énivatives of the weights. If
the weights are binary, their derivatives are discontisufunctions, and an error surface
cannot be evaluated. Solutions usually involve using cootis-valued weights but passing
them through a sigmoidal function such as a hyperbolic tangdich has a well-defined
derivative but can approximate a step function by scalirggattaxis. This tends to force
weights to resolve to binary values but leaves open issugsasihow to change the sigmoid
scaling during training. This solution requires that tiagnbe performed on a model of the
system rather than the system itself if the system (such msenustic transient processor
hardware) contains only binary values. Trinary values @ag&Jrally, even more complicated
to deal with.

3. The ICA update rule is static in time and is best suited faticapplications such as natural
scene analysis. It does not adequately deal with statistaraelation in time that arises
regularly in a system such as the acoustic transient ckassifiis not sufficiently powerful
enough to know that independent components appear angdeaywith transitions from one
to another. A temporally-based ICA algorithm cannot bedlio its own history and must
take such information into account. It may even require cefiit delay so as to observe
both past and future inputs around the input which causesvéight update. This would

significantly increase the complexity of the system.

5.4 Support Vector Machines

Another promising training method is the use Sipport Vector Machines [73]. The
theory of Support Vector Machines (SVM) provides a statatiramework for pattern classification

for which most standard methods such as multilayer neutalarks and radial basis functions are
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a subset. The main difference is that SVM theory formulatégteministic algorithm for learning
based on Lagrangian multipliers. Solutions are iteratheréuse large nonlinear networks rarely
have symbolic solutions) but not haphazard: quadraticraragning methods can find the optimal
separating hyperplanes for any classification task, givepasly tagged training data. As usual, of
course, it is necessary to choose the optimal complexithefféedforward classifier such that it
generalizes well and does not over-fit the data, but the dageandlratic programming allows one
to train and test networks of different complexity and detiee exactly what system complexity
yields the best generalization in a purely deterministitsee

There are only two failures of standard SVM to meet the neédseoacoustic transient
processor, and they are the same ones encountered withehmdia Component Analysis: The
temporal nature of the problem which gives rise to a high elegf correlation between successive
values of the outputs in time, and the binary (or trinaryuratf the template values which plays
havoc with learning algorithms due to the presence of dismoous derivatives. Hopefully, exten-
sions of SVM exist which can include both these cases. AlstM &aining uses a model of the
feed-forward classification system and should be refortedito allow the physical system to be its
own model (as with “chip in the loop” learning) to account fopperties of the real system which
may not be captured in a simple model.

5.5 Heuristic Methods (Unnikrishnan/Hopfield)

Speech signals are quite complicated and contain trassésnivell as long-term (vowel)
events of variable length. Successful recognition of feris can be viewed as a step towards
recognition of continuous speech. Another important stepe detection of vowel formants. When
separated from the more general task of speech recogrittisrg relatively easy problem, particu-
larly when the vocabulary is small. The task of digit rectigni provides a useful small-vocabulary
system which has been used often as a benchmark for speegnmitean systems. One system op-
timized to the task of continuous-speech digit recognitiotime architecture by Hopfield, Tank, and
Unnikrishnan [68, 69]. The architecture of [68] achieves9a8% recognition rate on continuous
spoken digits when trained for a single speaker, and a sianithitecture reported in [69] achieves
97.5% in a speaker-independent task (male speakers ortigseTiigures are for the author’'s own
recorded database, which is similar to the industry stah@#DIGITS, a database of both isolated
and continuously-spoken digits, using male, female, aild speakers from around the country.

The authors claim that their architecture was designed anlog implementation in
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mind, although the project never went further than the safénsimulation stage. The frontend to
the system is quite similar to the ATP frontend (see Secti@ril}: a filterbank of bandpass filters
(in this case, 32) followed by rectification and smoothinghvhe channel outputs modified by a
center-surround computation (which in our tests of ATP ieckures resulted in system behavior
almost identical to that using pairwise channel differefice
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Figure 5.1: Unnikrishnan, Hopfield, and Tank correlatohaecture, block diagram.

RECOGNITION
UNITS

The correlation between input and template is also simildhat of the ATP, except the
input signal is binarized, not the template. However, trigesome key differences by which the
Unnikrishnan et al. architecture copes with time variagionthe input pattern: it treats event times
as normally distributed variations around a fixed mean. isjgmnals from each (frequency) channel
travel through a delay line where they diffuse as they traaadl the correlation is computed at ten
“taps” spaced at regular time intervals (rather than atyetiere sample as in the ATP). The form of
the correlation is (following the naming conventions of &tion (1.2)):

M N T

Cz[t] = Z Z Zx[t—n,m]g[T,n]pz[T,m] (56)

m=1n=17=1
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Figure 5.2: Unnikrishnaset al. correlator simulation results on isolated digit recogmiti
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Figure 5.3: Response of architecture in simulation to tmeesiput as Figure 5.2 but with white
noise added to the input. The system remains robust in tisepce of noise.
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whereT is the number of taps, angl-] is the set of amplitudes defining the Gaussian diffusion
profile at each tap. Here | have taken the liberty of replaeirgntinuous integral, as it is presented
in the original paper ([68], Equation (3)), with a discreters as it is implemented in their software
simulation. The Gaussian diffusion kernels (Figure 5.4pfothe equation

g(n,7) = L exp <_(T — anelay)2> (5.7)

2mo 202

whereo = o2(n — | N/2])? defines the Gaussian width at each tap. Parameters forg¢aén
Gaussian widthy, and the spacing between tapg., are the main free variables of the system. If
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Figure 5.4: Gaussian kernels which diffuse the input in thaikkishnanet al. model.

we note that the weights and the Gaussian profiles are fixed wie can define a function in which
the weights are premultiplied by the Gaussian profiles t@ggn a new set of weights:

T
plz[nvm] = 29[77 n] pz[Tv m]7 (5.8)

T7=1
then the correlation takes a form equivalent to Equatio){1.

M N
c[t] = Z Zx[t—n,m]p'z[n,m]. (5.9)

m=1n=1

This reveals the close connection with the ATP algorithmthiprevious section of this chapter, |
explained how ensemble averaging over many inputs can peadmplates which encode the prob-
ability distribution of the timing of events relative to tip@int of segmentation. This architecture
does something very similar but assumes that the timinggitty distributions are normal and
encodes the normal distribution as a function (the Gaussiarels) rather than part of the template.

The arrangement of the equation in (5.9) moves the Gaussmtidns back into the template. The
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step may be regarded as an improvement or not depending oafheilities of the hardware. The
tapped-delay model of Unnikrishnan et al. requires muchdésrage per template, but on the other
hand it depends heavily on the Gaussian multiplication® dtthors envision the Gaussian kernel
multiplications as diffusion profiles in an analog circdipwever, the model shows diffusion oc-
curring both directions in time, an impossibility for a aiicimplemented as a physically diffuse
medium (such as the bucket brigade). We have emphasizasgtioot the thesis that analog mul-
tiplication is difficult and imprecise. The architectureoskn for the acoustic transient processor
is one which avoids the problem of analog multiplication &rid not unreasonable to assume that
the above equation, which casts the Unnikrisheiaal. model into the framework of the acoustic
transient processor, is a reasonable compromise betwsnsgize and accuracy. It remains to
be investigated whether the performance of this algoritamains high if the same manipulations
applied to the ATP algorithm are applied to it; namely, if theights take binary values instead of,
or in addition to, the input. If so, then an ATP-like architge can be used to implement and test
the algorithm.

The scheme used by the Unnikrishrehal. architecture for training the system lies some-
where between the simplicity of ensemble averaging andahwtexity of independent component
analysis. Segmentation of each input example is performgdthbd, but the system learns the cor-
rect position of the segmentation through a bootstrappiethod. Segmentation is defined as the
point near or at the end of the spoken word at which the detetiould signal a correct classifi-
cation. The set of weights for each word recognizer is uptatigh a gradient-descent equation
(perceptron rule), where the word recognizer matching tdi@ihg word presented is updated to
increase its output at the segmentation point, while thedwecognizers for all other words are
updated to decrease their outputs at the segmentation gairalso at other fixed intervals during
the presentation of the input training example. When thigitrg is near completion, the system can
use its own output to determine the segmentation point,dhowing it to overcome small errors in
the estimated segmentation. The negative training on fecliass weights helps the system isolate
those parts of each class which are different from all thersthunlike ensemble averaging which
will additionally encode those features which are commoaalltransient classes.

Because spoken digits are not transients, they have timggpethe order of half a second
or longer, requiring a delay length (and template size) ntloa@ four times that of the ATP. This
is because the Unnikrishnahal. architecture is not hierarchical. It is not even phonetibijolv is
a simple form of hierarchy used by many systems. If a phonetoars twice in the same word,
or if the same phoneme is shared among several words, tleel st@ights encoding the recognizer
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of that phoneme are duplicated for every instance. A hibieat structure could easily remove
that redundancy. Using one correlator pbeoneme and employing a state-based model to detect
transitions between phonetic states is a much more effiosmniof hardware, and should create a

system more robust to differences in the timespan of diffeirestances of the same spoken digit.

5.6 Biologically-Inspired Methods

A potential use of the acoustic transient processor is trestigation of acoustic process-
ing in the brain. Recent research by Shamma [70] shows th@ic@reas of the mammalian audi-
tory cortex encode time-frequency maps in neural “wetWw&bamma subjected neural recordings
to analysis and was able to produce the time-frequency mgpricoded by single neuron outputs.
These maps are qualitatively similar to spatial mappingd@independent components of natural
images as produced by Bell and Sejnowski [72]. A large prigorof both the neural and nat-
ural scene ICA outputs have Gabor logon-like charactesigtihat is, sine- and cosine-modulated
Gaussians in 2-dimensional space). This is not entirelgriging given the relationship of all three
systems (wavelets, independent component analysis, atadjigial neural processing) to informa-
tion theory and the efficient representation of signals.

A typical example of a map in the auditory cortex is shown igufé 5.5. The figure
represents the level of neural activity in response to andsignals over a range of frequency and
change of frequency with time. The neural activity is meadtin spikes per second and averaged
over numerous trials. Most of the map is unencoded—thatésnéuron does not respond at all, ei-
ther with excitation or inhibition, to inputs in that rangktione and frequency. Other areas produce
an excitatory response (red) and others, an inhibitoryoresp (blue). In the figure, the mapping is
tuned to a falling tone. If the mapping represents the injmecdy (that is, without differentiation
in time or frequency), then the mapping is strongly tuned padicular falling formant but at the
same time is strongly inhibiting a tone slightly below it reduency and/or slightly lagging in time.
On the other hand, if the mapping represents a channetefifed encoding of the input, then the
mapping represents a simple response to a single fallirgy tArsimple model of the distributions
which covers most cases observed in the auditory cortex edorimed by one or two Gaussians
encoding regions of either odd symmetry, as shown in thedigar even symmetry consisting of
a large excitatory response surrounded by inhibitory sitbes. The angle of the Gaussians cor-
responds to the rate of the rise or drop. At the extremes, askauwith no rotation (horizontal)

encodes a constant tone, and a vertically-aligned Gaussieodes a very fast transient or some
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Figure 5.5: Example of a biologically-inspired template@uting a falling tone of specific fre-

guency and ratdeft: Continuous-valued encodingight: Trinary encoding.

kind of instantaneous spectral information. The Gaussiatefined by the equation

1
r\/m exp ((x —x0)U(x — Xo)T) (5.10)

wherex is a 2-dimensional vector in time and frequenzy,is the distribution center, and is a

U — [ (U;)2 ( ,0)2 ] (5.11)
gf

having components for variance in timag in frequencyo ¢, and the covariance coefficientwhich

covariance matrix

effectively represents a rotation of the distribution.

The acoustic transient architecture algorithm providesag to actively test theories as-
sociated with the observations from the auditory cortexparticular, the trinary encoding of the
digital transient classifier hardware can encode regiorgositive and negative response inside a
region of zero response, as shown on the right-hand sideyofé&b.5. This is essentially an attempt
to map the correlation algorithm onto a neuron, where eacdtilan of the template maps more or
less directly to a synapse connection between the delaytpdtaf the cochlear frequency mapping
and the neuron under study in the auditory cortex. The neisrorore efficient than the correlator
because it presumably uses no more synaptic connectionsdza@ssary for each response. It also
has a higher resolution than the correlator because thetymeeights encode continuous-valued
weights: a neat little trick of nature that is, as noted invimas chapters, rather difficult to duplicate
in silicon. Also, the neurons of the brain make optimally@éit use of the nonlinearities inherent
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to the system, whereas the correlator is a linear systertaiicanethods of training, such as inde-

pendent component analysis, depend on this fact). Degptdifferences between a real neuron
and its model implemented as a linear, trinary correlatio&can expect that the system is in most
ways like the acoustic transient system and should thexeéonain reasonably robust after the same
algorithmic manipulations.
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Conclusion

This thesis has sought to portray analog VLSI as a mediumdiaputation and a viable
alternative to digital signal processing. These aspecsaliog design were taken for granted many
years ago before the start of the so-called “computer réweolfi but today require justification in
an increasingly high-speed digital world.

Our use of the Analog VLSI medium concentrates on acousficasiprocessing. We
show how efficient use of mixed-mode processing, tranglingauit design, and other techniques
can lead to compact, power-efficient systems which canBi&®s in many aspects of performance.
What we espouse is a view of system design which starts aetled of algorithms and looks at
all ways, both analog, digital, or mixtures of both, whicldaest implement a specific system
under the constraint of limited resources, namely, size @owler. | believe that there is still a
need for compact, power-efficient analog computing syserans in a primarily digital world. The
conflicting demands of energy efficiency and raw processavgep must be satisfied, and so system
design must avoid many of the pitfalls of brute-force digitasign and achieve ever greater levels
of finesse from devices to circuits to algorithms and systems

In this thesis, we have demonstrated the application ofieffi@nalog and mixed-signal
design to several acoustic signal processing systemtngtarth ways of perceiving and mapping
the time-frequency domain. Throughout the thesis, we hheg/s how each system deals with
this mapping, from wavelet transforms to filterbanks andepatclassification systems. We have
“zoomed in” from this view of signal processing to look at sifie circuits for implementing time-
frequency transformations of acoustic inputs and acoystttern recognition and classification.
And we have “zoomed out” from this view to look at the largestpie of learning machines, speech
recognition, and biological models of neural processing aduld continue on in either direction,
from transistor physics to the human brain, because tieguEncy mapping of acoustic data occurs
ubiquitously in both nature and in engineering. At this imtpot juncture of circuits, acoustics,
biology, and machine and human learning, we hope we havedawsome valuable insights and
pointed the way to better engineering design.
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